Math, asked by AbhitheGeniOus, 2 days ago

Solve and Explain this​

Attachments:

Answers

Answered by naw262719
0

Answer:

degree is 16.

Step-by-step explanation:

first multiply both algebraic expressions

the find the sum of the power of variables.

Answered by mathdude500
5

\large\underline{\sf{Given \:Question - }}

The degree of

\rm :\longmapsto\:\bigg( - \dfrac{1}{20} {x}^{4} {y}^{3}\bigg) \times \bigg( - 5 {x}^{7}  {y}^{2} \bigg)

\green{\large\underline{\sf{Solution-}}}

Given polynomial is

\rm :\longmapsto\:\bigg( - \dfrac{1}{20} {x}^{4} {y}^{3}\bigg) \times \bigg( - 5 {x}^{7}  {y}^{2} \bigg)

can be regrouped as

\rm \:  =  \: \bigg( - \dfrac{1}{20} \times ( - 5) \bigg) \times \bigg( {x}^{4} \times  {x}^{7}\bigg)  \times \bigg( {y}^{3} \times  {y}^{2}  \bigg)

We know,

\red{\rm :\longmapsto\:\boxed{\tt{  {x}^{m}  \: \times \:   {x}^{n}  \: = \:   {x}^{m \:  + \:  n} \: }}}

So,

\rm \:  =  \: \dfrac{1}{4} \times  {x}^{4 + 7} \times  {y}^{3 + 2}

\rm \:  =  \: \dfrac{1}{4} \times  {x}^{11} \times  {y}^{5}

\rm \:  =  \: \dfrac{ {x}^{11}  \times  {y}^{5} }{4}

\rm \:  =  \: \dfrac{ {x}^{11} \: {y}^{5} }{4}

Thus,

\rm :\longmapsto\:\boxed{\tt{ \bigg( - \dfrac{1}{20} {x}^{4} {y}^{3}\bigg) \times \bigg( - 5 {x}^{7}  {y}^{2} \bigg) =  \frac{ {x}^{11} \:  {y}^{5} }{4} \: }}

So, Degree of polynomial expression is 16.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn More :-

\boxed{\tt{  {x}^{m} \times  {x}^{n} =  {x}^{m + n} \: }}

\boxed{\tt{  {x}^{m}  \div   {x}^{n} =  {x}^{m  -  n} \: }}

\boxed{\tt{  {( {x}^{m}) }^{n} \:  =  \:  {x}^{mn} \: }}

\boxed{\tt{  {x}^{0} = 1 \: }}

\boxed{\tt{  {x}^{ - n} \:  =  \:  \frac{1}{ {x}^{n} } \: }}

Similar questions