Math, asked by S7iddushviduazsh, 1 year ago

Solve and explain value of sec 72-sec36.

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\mathsf{sec\,72^\circ-sec\,36^\circ}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{sec\,72^\circ-sec\,36^\circ}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{sec\,72^\circ-sec\,36^\circ}

\textsf{This can be written as}

\mathsf{=\dfrac{1}{cos\,72^\circ}-\dfrac{1}{cos\,36^\circ}}

\mathsf{=\dfrac{cos\,36^\circ-cos\,72^\circ}{cos\,72^\circ\;cos\,36^\circ}}

\mathsf{Using,}\;\;\boxed{\mathsf{cos\,C-cos\,D=-2\,sin\left(\dfrac{C+D}{2}\right)\;sin\left(\dfrac{C-D}{2}\right)}}

\mathsf{=\dfrac{-2\,sin\left(\dfrac{36^\circ+72^\circ}{2}\right)\;sin\left(\dfrac{36^\circ-72^\circ}{2}\right)}{cos\,72^\circ\;cos\,36^\circ}}

\mathsf{=\dfrac{-2\,sin\,54^\circ\;sin(-18^\circ)}{cos\,72^\circ\;cos\,36^\circ}}

\mathsf{=\dfrac{2\,sin\,54^\circ\;sin\,18^\circ}{cos\,72^\circ\;cos\,36^\circ}}\;\;\mathsf{(\because\;sin(-\theta)=-sin\theta)}

\mathsf{Using,}\;\;\boxed{\mathsf{sin\,\theta=cos(90^\circ-\theta)}}

\mathsf{=\dfrac{2\,cos\,36^\circ\;sin\,72^\circ}{cos\,72^\circ\;cos\,36^\circ}}

\mathsf{=2}

\implies\boxed{\mathsf{sec\,72^\circ-sec\,36^\circ=2}}

Similar questions