Math, asked by sahil0111patel, 11 months ago

solve and find (a+b). in above equation.​

Attachments:

Answers

Answered by Hiteshbehera74
1

a+b = 16.

2( \sqrt{3 +  \sqrt{5 -  \sqrt{13 +  \sqrt{48} } } } ) \\  = 2( \sqrt{3 +  \sqrt{5 -  \sqrt{13 + 4 \sqrt{3} } } } ) \\  = 2( \sqrt{3 +  \sqrt{5 -  \sqrt{1 + (2  \times 2 \sqrt{3} \times 1 )+ 12 } } } ) \\  = 2( \sqrt{3 +  \sqrt{5 -  \sqrt{ {(1 + 2 \sqrt{3} )}^{2} } } } ) \\  = 2( \sqrt{3 +  \sqrt{5 - 1 - 2 \sqrt{3} } } ) \\  = 2( \sqrt{3  +  \sqrt{4 - 2 \sqrt{3} } } ) \\  = 2( \sqrt{1 +  \sqrt{1 - (2 \times  \sqrt{3}  \times 1) + 3} } ) \\  = 2( \sqrt{3 +  \sqrt{ {( 1-\sqrt{3} )}^{2} } }  \\  = 2( \sqrt{3 +  1-\sqrt{3} } ) \\  = 2( \sqrt{4+  \sqrt{3} } )  =  \sqrt{a}  +  \sqrt{b}  \\

Squaring both side we get,

4 {( \sqrt{4+  \sqrt{3} } )}^{2}  =  {( \sqrt{a}  +  \sqrt{b} )}^{2}  \\ 4(4+  \sqrt{3} ) = a + b + 2 \sqrt{ab}  \\ 16 + 4 \sqrt{3}  = a + b + 2 \sqrt{ab}

Thus, a+b = 16

Similar questions