Math, asked by theenadurairaj, 3 months ago

Solve and find the value of x​

Attachments:

Answers

Answered by StormEyes
6

Solution!!

\sf \to \dfrac{2x+7}{5}-\dfrac{3x+11}{2}=\dfrac{2x+8}{3}-5

Taking the LCM

\sf \to \dfrac{2(2x+7)-5(3x+11)}{10}=\dfrac{2x+8-15}{3}

Simplifying the numerators

\sf \to \dfrac{4x+14-15x-55}{10}=\dfrac{2x-7}{3}

\sf \to \dfrac{-11x-41}{10}=\dfrac{2x-7}{3}

Cross multiplication

\sf \to 3(-11x-41)=10(2x-7)

Simplification

\sf \to -33x-123=20x-70

\sf \to -33x-20x=123-70

\sf \to -53x = 53

\sf \to x = \dfrac{53}{-53}

\sf \to \boxed{\bold{x=-1}}

Verification:-

Taking LHS

\sf \to \dfrac{2x+7}{5}-\dfrac{3x+11}{2}

\sf \to \dfrac{2(-1)+7}{5}-\dfrac{3(-1)+11}{2}

\sf \to \dfrac{-2+7}{5}-\dfrac{-3+11}{2}

\sf \to \dfrac{5}{5}-\dfrac{8}{2}

\sf \to \dfrac{10-40}{10}

\sf \to \dfrac{-30}{10}

\sf \to \bold{-3}

Taking RHS

\sf \to \dfrac{2x+8}{3}-5

\sf \to \dfrac{2(-1)+8}{3}-5

\sf \to \dfrac{-2+8}{3}-5

\sf \to \dfrac{6}{3}-5

\sf \to \dfrac{6-15}{3}

\sf \to \dfrac{-9}{3}

\sf \to \bold{-3}

LHS = RHS

Hence, verified.

Answered by amitavsahoo01
0
-3 is the correct answer and thank u
Similar questions