Math, asked by pratham105, 1 year ago

solve and find the value of x3+y3+9xy-27 if x+y=3

Answers

Answered by kmodi2222
55
x+y=3
cube both sides
(3)^3=(x+y)^3
27=x3+y3+3xy(x+y)
27=x3+y3+3xy(3)
27=x3+y3+9xy ......... (1)
x3+y3+9xy-27
from equation (1)
27-27
0
Answered by tardymanchester
32

Answer:

x^3+y^3+9xy-27=0 if x+y=3

Step-by-step explanation:

Given : Expression x+y=3

To find : The value of the x^3+y^3+9xy-27?

Solution :

x+y=3

Cubing both side,

(x+y)^3=3^3

By using the identity, (x+y)^3 = x^3+3x^2y+3xy^2+y^3

(x+y)^3=27

x^3+3\times x^2\times y+3\times y\times x^2+y^3=27

x^3+y^3+3xy(x+y)=27

We know, x+y=3

x^3+y^3+3xy(3)=27

x^3+y^3+9xy=27

To find the value of the x^3+y^3+9xy-27

Substituting x^3+y^3+9xy=27

=27-27

=0

x^3+y^3+9xy-27=0 if x+y=3

Similar questions