Math, asked by yoyakim935, 1 year ago

Solve and graph the solution:  - 1^{\frac{2}{3}} \leq x + ^\frac{1}{3} \  \textless \  4^{\frac{1}{3}} , x  W.

Answers

Answered by MaheswariS
0

Answer:


Step-by-step explanation:

The given inequality is solved by simplification


-1\frac{2}{3}\leq\:x+\frac{1}{3} < 4\frac{1}{3}\\\\\frac{-5}{3}\leq\:x+\frac{1}{3} < \frac{13}{3}

subtract by 1/3

\frac{-5}{3}-\frac{1}{3}\leq\:x+\frac{1}{3}-\frac{1}{3} < \frac{13}{3}-\frac{1}{3}\\\\\frac{-6}{3}\leq\:x < \frac{12}{3}\\\\-2\leq\:x < 4


Therefore x∈ [-2, 4)


Attachments:
Similar questions