Physics, asked by Anonymous, 9 months ago

Solve and Rationalising 1/7 + 3√2

Answers

Answered by Anonymous
183

Solution

 \longrightarrow \tt  \dfrac{1}{7 + 3 \sqrt{2} }

 \sf \longrightarrow \dfrac{1}{7 + 3 \sqrt{2} }  \times \dfrac{7 - 3 \sqrt{2} }{7  -  3 \sqrt{2} }

\sf \longrightarrow  \dfrac{7 - 3 \sqrt{2} }{(7)^{2} - (3 \sqrt{2}) ^{2}   }

\sf \longrightarrow \dfrac{7 - 3 \sqrt{2} }{49 -( 9 \times 2)}

\sf \longrightarrow \dfrac{7 - 3 \sqrt{2} }{49 -18}

\sf \longrightarrow \dfrac{7 - 3 \sqrt{2} }{31}

Some Important Identities

  •  \dag \: \sf   {(a+b)^{0} = 1}  \: \dag

  •  \dag  \: \sf  {(a+b)^{1} = a + b} \: \dag

  •  \dag \: \sf {(a+b)^{2} = a^{2} + 2ab + b^{2}} \: \dag

  •  \dag \: \sf  {(a-b)^{2} = a^{2} - 2ab + b^{2}} \: \dag

  •  \dag \: \sf  {a^{2} - b^{2} = (a+b)(a-b)} \: \dag
Attachments:
Answered by Anonymous
10

 \huge\bf { \red S \green O \pink L \blue U \orange T \purple I  \red O \pink N \green{...}}

 \sf : \implies \dfrac{1}{7 + 3 \sqrt{2} }

\sf : \implies \dfrac{1}{7 + 3 \sqrt{2} }  \times  \dfrac{7 - 3 \sqrt{2} }{7 - 3 \sqrt{2} }

\sf : \implies \dfrac{7 - 3 \sqrt{2} }{ {(7)}^{2} -  {(3 \sqrt{2}) }^{2}  }

\sf : \implies \dfrac{7 - 3 \sqrt{2} }{49 - 18}

\sf : \implies \dfrac{7 - 3 \sqrt{2} }{31}

IdentitY used :-

\large : \implies \sf a^2 - b^2 =( a+b) ( a - b )

Similar questions