Math, asked by Sarim666, 9 months ago

solve and send the solution via an image only​

Attachments:

Answers

Answered by ashajuneja09
2

Solution is given in the image

pls brainliest answer pls pla pla pls pls mark kro

Attachments:
Answered by BrainlyTornado
2

QUESTION:

 \sf If \ \left(  \dfrac{a^{-1}b^2}{ {a}^{2} {b}^{ - 4}  } \right)^{7}  \div  \left(  \dfrac{a^{3}b^{ - 5}}{ {a}^{ - 2} {b}^{3}  } \right)^{ - 5} =  {a}^{p} . {b}^{q}

 \sf find\ p\ and\ q

ANSWER:

  • The value of p = 4, q = 2

GIVEN:

 \sf \left(  \dfrac{a^{-1}b^2}{ {a}^{2} {b}^{ - 4}  } \right)^{7}  \div  \left(  \dfrac{a^{3}b^{ - 5}}{ {a}^{ - 2} {b}^{3}  } \right)^{ - 5} =  {a}^{p} . {b}^{q}

EXPLANATION:

 \sf \left(  \dfrac{a^{-1}b^2}{ {a}^{2} {b}^{ - 4}  } \right)^{7}   =  \left( \dfrac{a^{-7}b^{14}}{ {a}^{14} {b}^{  - 28}  } \right)

\boxed{\bold{\large{\gray{\dfrac{x^m}{x^n}= x^{m - n}}}}}

 \sf \left(  \dfrac{a^{-1}b^2}{ {a}^{2} {b}^{ - 4}  } \right)^{7}   =  (a^{-7 - 14})(b^{14  + 28})

 \sf \left(  \dfrac{a^{-1}b^2}{ {a}^{2} {b}^{ - 4}  } \right)^{7}   =  (a^{-21})(b^{ 42})

 \sf  \left(  \dfrac{a^{3}b^{ - 5}}{ {a}^{ - 2} {b}^{3}  } \right)^{ - 5} = \left(  \dfrac{a^{ - 15}b^{ 25}}{ {a}^{ 10} {b}^{ - 15}  } \right)

\boxed{\bold{\large{\gray{\dfrac{x^m}{x^n}= x^{m - n}}}}}

 \sf  \left(  \dfrac{a^{3}b^{ - 5}}{ {a}^{ - 2} {b}^{3}  } \right)^{ - 5} = (a^{ - 15 - 10})(b^{ 25 + 15})

 \sf  \left(  \dfrac{a^{3}b^{ - 5}}{ {a}^{ - 2} {b}^{3}  } \right)^{ - 5} = (a^{  - 25})(b^{40})

 \sf \left(  \dfrac{a^{-1}b^2}{ {a}^{2} {b}^{ - 4}  } \right)^{7}  \div  \left(  \dfrac{a^{3}b^{ - 5}}{ {a}^{ - 2} {b}^{3}  } \right)^{ - 5} =  {a}^{p} . {b}^{q}

 \sf \dfrac{(a^{-21})(b^{42})}{ (a^{  - 25})(b^{40})}=  {a}^{p} . {b}^{q}

\boxed{\bold{\large{\gray{\dfrac{x^m}{x^n}= x^{m - n}}}}}

 \sf (a^{-21 + 25})(b^{ 42 - 40})=  {a}^{p} . {b}^{q}

 \sf (a^{4})(b^{ 2})=  {a}^{p} . {b}^{q}

Bases are equal equate the powers

p = 4, q = 2

HENCE THE VALUE OF p = 4, q = 2.

Similar questions