Math, asked by sr5049083, 4 months ago

solve and verify
x-2/6x+1 = 1​

Answers

Answered by Auяoяà
3

Equation given :

\dashrightarrow\sf\dfrac{x-2}{6x+1}=1

Solution :

\longmapsto\sf\dfrac{x-2}{6x+1}=1

\longmapsto\sf{x-2=1(6x+1)}

\longmapsto\sf{x-2=6x+1}

\longmapsto\sf{x-6x=1+2}

\longmapsto\sf{-5x=3}

\longmapsto\sf{-x=}\dfrac{3}{5}

\longmapsto\sf{x=}{-}\dfrac{3}{5}

{\boxed{\sf{\green{Verification \ :}}}}

Equation given :

\to\sf\dfrac{x-2}{6x+1}=1

Putting the value of x.

\leadsto\sf{\dfrac{\dfrac{-3}{5} - 2}{6\times \dfrac{-3}{5} + 1} = 1}

\leadsto\sf{\dfrac{\dfrac{-3-10}{5}}{ \dfrac{-18}{5} + 1} = 1}

\leadsto\sf{\dfrac{\dfrac{-13}{5}}{ \dfrac{-18+5}{5}} = 1}

\leadsto\sf{\dfrac{\dfrac{-13}{5}}{ \dfrac{-13}{5}} = 1}

\leadsto\sf{\dfrac{-13}{5}}{=}1(\dfrac{-13}{5})

\sf\blue{(By \ cross \ multiplication )}

\leadsto\sf{\dfrac{-13}{5}}{=}\dfrac{-13}{5}

\underline{\rm{\pink{Hence, L.H.S. = R.H.S.}}}

\underline{\rm{\pink{Thus, Verified}}}

Similar questions