Math, asked by richakumari79, 7 months ago

solve and verify:
x^2-(x+2)(x+3)/7x+1 = 2/3​

Answers

Answered by vinodhammad
0

Answer:

Please do follow me for answering

Step-by-step explanation:

Answer:-

\begin{gathered}\frac{ {x }^{2} - (x + 2)(x + 3) }{7x + 1} = \frac{2}{3} \\ \\ = > \frac{ {x}^{2} - ( {x}^{2} + 5x + 6) }{7x + 1} = \frac{2}{3} \\ \\ = > \frac{ {x }^{2} - {x}^{2} - 5x - 6 }{7x + 1} = \frac{2}{3} \\ \\ = > \frac{ - 5x - 6}{7x + 1} = \frac{2}{3} \\ \\ = > 3 \times (- 5x - 6) = 2 \times (7x + 1) \\ \\ = > - 15x - 18 = 14x + 2 \\ \\ = > 29x = - 20 \\ \\ = > x = \frac{ - 20}{29}\end{gathered}

7x+1

x

2

−(x+2)(x+3)

=

3

2

=>

7x+1

x

2

−(x

2

+5x+6)

=

3

2

=>

7x+1

x

2

−x

2

−5x−6

=

3

2

=>

7x+1

−5x−6

=

3

2

=>3×(−5x−6)=2×(7x+1)

=>−15x−18=14x+2

=>29x=−20

=>x=

29

−20

Now verification

Putting the value of X

\begin{gathered}= > \frac{ { \frac{ - 20}{29} }^{2} - { \frac{ - 20}{29} }^{2} - 5 \times \frac{ - 20}{29} - 6 }{7 \times \frac{ - 20}{29} + 1} = \frac{2}{3} \\ \\ = > \frac{ \frac{ 100}{29} - 6 }{ \frac{ - 140}{29} + 1} = \frac{2}{3} \\ \\ = > \frac{ \frac{100 - 174}{29} }{ \frac{ - 140 + 29}{29} } = \frac{2}{3} \\ \\ = > \frac{ \frac{ - 74}{29} }{ \frac{ - 111}{29} } = \frac{2}{3} \\ \\ = > \frac{ - 74}{ - 111} = \frac{2}{3} \\ \\ = > \frac{74}{111} = \frac{2}{3} \\ \\ = > \frac{37 \times 2}{37 \times 3} = \frac{2}{3} \\ \\ = > \frac{2}{3} = \frac{2}{3} \\ \\\end{gathered}

=>

29

−20

+1

29

−20

2

29

−20

2

−5×

29

−20

−6

=

3

2

=>

29

−140

+1

29

100

−6

=

3

2

=>

29

−140+29

29

100−174

=

3

2

=>

29

−111

29

−74

=

3

2

=>

−111

−74

=

3

2

=>

111

74

=

3

2

=>

37×3

37×2

=

3

2

=>

3

2

=

3

2

Hence LHS = RHS verified

Answered by kaviya08102001
1

Step-by-step explanation:

x^2-x^2-3x-2x-6/7x+1=2/3

-5x-6=2/3×7x+1

3(-5x-6)=14x+2

-15x-18=14x+2

Multiply both side by (-);

15x+18=-14x-2

15x+14x=-2-18

29x=-20

x=-20/29

Similar questions