Math, asked by saachisingh200p99u8d, 10 months ago

Solve and write the answer. Please do not expect me to mark you brainiest if you just write
I don't know the answer​

Attachments:

Answers

Answered by BrainlyIAS
15

\bigstar Given :

  • \bf y=x^{x^x^{......\infty}}

\bigstar To Prove :

  • \bf \dfrac{dy}{dx}=\dfrac{y^2}{x(1-ylogx)}

\bigstar Proof :

\bf Let\ y=x^y

Apply log on both sides , we get ,

\implies \bf log\ y=log\ (x^y)\\\\\implies \bf log\ y=y.log\ x

Now , Differentiate with respect to x on both sides , we get ,

\implies \bf \dfrac{d}{dx}(log\ y)=\dfrac{d}{dx}(y.log\ x)\\\\\implies \bf \dfrac{1}{y}.\dfrac{dy}{dx}=log\ x.\dfrac{dy}{dx}+y.\dfrac{1}{x}\\\\\implies \bf \dfrac{dy}{dx}(\dfrac{1}{y}-log\ x)=\dfrac{y}{x}\\\\\implies \bf \dfrac{dy}{dx}(\dfrac{1-y.log\ x}{y})=\dfrac{y}{x}\\\\\implies \underbrace{\sf {\orange{\dfrac{dy}{dx}=\dfrac{y^2}{x(1-y.log\ x)}}}}

\bigstar More Info :

\underline{\boxed{\bullet \;\;\bf \;log\ x^y=y.log\ x}}\\\\\underline{\boxed{\bullet \;\;\bf \dfrac{d}{dx}(log\ x)=\dfrac{1}{x}}}\\\\\underline{\boxed{\bullet \;\; \bf \dfrac{d}{dx}(uv)=v.\dfrac{du}{dx}+u.\dfrac{dv}{dx}}}

Answered by BrainlyPopularman
27

CORRECT QUESTION :

 \\ \sf {\huge{.}}  \: if \:  \: y =  { {x}^{x} }^{x..... \infty }  \:  \: then \:  \: prove \:  \: that \:  \:  \dfrac{dy}{dx} =  \dfrac{ {y}^{2} }{x(1 -  y log(x)) } \\

ANSWER :

GIVEN :

   \\  { \huge{.}}{ \bold{ \:  \:  \: y =  { { {x}^{x} }^{x......  \infty } } }} \\

TO PROVE :

   \\  \to{ \bold{ \:  \:  \:   \dfrac{dy}{dx} =  \dfrac{ {y}^{2} }{x(1 -  y log(x)) }   }} \\

SOLUTION :

   \\  \implies{ \bold{  y =  { { {x}^{x} }^{x......  \infty } } }} \\

   \\  \implies{ \bold{  y =  { { {x}^{(x} }^{x......  \infty )} } }} \\

• We should write this as –

   \\  \implies{ \bold{  y =  { { {x}^{(y)}} } }} \\

• Take log on both side –

   \\  \implies{ \bold{ log(y)  = log({x}^{y})}} \\

• Using property –

   \\  \longrightarrow \: { \bold{  log({a}^{b}) =( b) log(a) }} \\

• So –

   \\  \implies{ \bold{ log(y)  = (y)log(x)}} \\

• Now Differentiate with respect to 'x' –

   \\  \implies{ \bold{ \left( \dfrac{1}{y}  \right) \dfrac{dy}{dx}   = y\left( \dfrac{1}{x}  \right) +  log(x).\dfrac{dy}{dx}}} \\

   \\  \implies{ \bold{ \left( \dfrac{1}{y}  \right) \dfrac{dy}{dx}  -  log(x).\dfrac{dy}{dx} = y\left( \dfrac{1}{x}  \right) }} \\

   \\  \implies{ \bold{  \dfrac{dy}{dx} \left( \dfrac{1}{y}  -  log(x)  \right) = \left( \dfrac{y}{x}  \right) }} \\

   \\  \implies{ \bold{  \dfrac{dy}{dx} \left( \dfrac{1 - y log(x) }{y} \right) = \left( \dfrac{y}{x}  \right) }} \\

   \\  \implies{ \bold{  \dfrac{dy}{dx}  =  \dfrac{ {y}^{2}  }{x(1 - y log(x))}}} \\

   \\   \:  \:  \:  \:  \:  \:  \: { \bold{  \underbrace{Hence \:  \: proved}}} \\

 \\ \rule{220}{2} \\

USED FORMULA :

   \\ { \bold{ (1)  \:  \: \dfrac{d( log(x)) }{dx}  =  \dfrac{1}{x} }} \\

   \\ { \bold{ (2)  \:  \: \dfrac{d(u.v) }{dx}  = u \dfrac{dv}{dx}  + v \dfrac{du}{dx} }} \\

 \\ \rule{220}{2} \\

Similar questions