solve any one of the 2 .......
Answers
Step-by-step explanation:
(i) Given a : b : c = 4 : 5 : 6
Let a = 4k, b = 5k, c = 6k.
∴ cos C = (a² + b² - c²)/2ab
= (16k² + 25k² - 36k²)/40k²
= k²(16 + 25 - 36)/k²(40)
= 5/40
= 1/8.
∴ cos A = (b² + c² - a²)/2bc
= (25k² + 36k² - 16k²)/60k²
= 45k²/60k²
= 3/4
We know that:
cos 2A = 2 cos² A - 1
= 2 (3/4)² - 1
= 2(9/16) - 1
= 1/8
= cos C
∴ cos 2A = cos C
∴ ∠C = 2∠A.
(ii)
(a)
By cosine law of triangles,
cosA = (b² + c² - a²)/2bc
cosB = (a² + c² - b²)/2ac
cosC = (a² + b² - c²)/2ab
Given: (cosA/a) + (cosB/b) + (cosC/c)
= (b² + c² - a²/2abc) + (c² + a² - b²/2abc) + (a² + b² - c²/2abc)
= (b² + c² - a² + c² + a² - b² + a² + b² - c²)/2abc
= (a² + b² + c²)/2abc.
Hope it helps!
Answer
OK, so here we go :)
We'll have to use the cosine rule to be able to prove this.
Draw a triangle with side lengths 4, 5 and 6 respectively.
Angle A is opposite side 4, angle B is opposite the length 5, and angle C is opposite side length 6.
Applying the cosine rule shows us :
CosA = (b^2 + c^2 - a^2) /(2bc)
CosA = (5^2 + 6^2 - 4^2) /(2×5×6)
CosA = 3/4
A = 41.41*..........
Let's do it for angle C, shall we?
CosC = (a^2 + b^2 - c^2) /2ab
CosC = (4^2 + 5^2 - 6^2) /(2×4×5)
CosC = 1/8
C = 82.82*............
Since 82.82 is twice the angle for A,
we have proved that: C = 2 × ∠A