Math, asked by devangroy1234, 9 months ago

solve as soon as possible​

Attachments:

Answers

Answered by sonamkapoor06
1

I think it's answer is 0

Answered by Anonymous
5

GIVEN:-

  • \rm{\dfrac{7 + \sqrt{5}}{7-\sqrt{5}} - \dfrac{7 - \sqrt{5}}{7 + \sqrt{5}}}.

TO FIND:-

  • The Value of given Problem.

HOW TO SOLVE:-

  • Firstly, we will solve the problem by solving them separately by Rationalisation method.

  • After find the value seperately we will subtract them.

Now,

\rm{\dfrac{7 + \sqrt{5}}{7-\sqrt{5}}\times{\dfrac{7+\sqrt{5}}{{7+\sqrt{5}}}}}

\rm{\dfrac{(7 + \sqrt{5})^2}{49-5}}

\rm{\dfrac{49 + 14\sqrt{5} + 5}{44}}

\rm{ {\dfrac{54+ 14\sqrt{5}}{44}}}.

Again

\rm{\dfrac{7 - \sqrt{5}}{7+\sqrt{5}}\times{\dfrac{7-\sqrt{5}}{{7-\sqrt{5}}}}}

\rm{\dfrac{(7 - \sqrt{5})^2}{49-5}}

\rm{\dfrac{49 - 14\sqrt{5} + 5}{44}}

\rm{ \dfrac{54- 14\sqrt{5}}{44}}.

Now,

\rm{ \dfrac{54+ 14\sqrt{5}}{44} - \dfrac{(54- 14\sqrt{5})}{44}}

\rm{ \dfrac{54 + 14\sqrt{5} - 54+14\sqrt{5}}{44}}

\rm{ \dfrac{ 28\sqrt{5}}{44}}.

Hence, The value is 285/44.

Similar questions