Math, asked by rintighose, 8 months ago

Solve ax + by -2 and a2x + b2y = a + b. given a and b are non-zero constants such that a is not equal to b

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\mathsf{ax+by=2}

\mathsf{a^2x+b^2y=a+b}

\underline{\textsf{To find:}}

\textsf{The solution of the given equations}

\underline{\textsf{Solution:}}

\textsf{We apply the cross mutiplication rule to}

\textsf{given linear equations}

\mathsf{ax+by-2=0}

\mathsf{a^2x+b^2y-(a+b)=0}

\textsf{By cross multiplication rule}

\mathsf{\dfrac{x}{-b(a+b)+2b^2}=\dfrac{y}{-2a^2+a(a+b)}=\dfrac{1}{ab^2-a^2b}}

\mathsf{\dfrac{x}{-ab+b^2+2b^2}=\dfrac{y}{-2a^2+a^2+ab)}=\dfrac{1}{ab(b-a)}}

\mathsf{\dfrac{x}{b(b-a)}=\dfrac{y}{a(b-a)}=\dfrac{1}{ab(b-a)}}

\mathsf{\dfrac{x}{b}=\dfrac{y}{a}=\dfrac{1}{ab}}

\implies\mathsf{\dfrac{x}{b}=\dfrac{1}{ab}}

\mathsf{x=\dfrac{b}{ab}=\dfrac{1}{a}}

\textsf{and}

\mathsf{\dfrac{y}{a}=\dfrac{1}{ab}}

\mathsf{y=\dfrac{a}{ab}=\dfrac{1}{b}}

\underline{\textsf{Answer:}}

\textsf{The solution is}

\mathsf{x=\dfrac{1}{a},\;y=\dfrac{1}{b}}

Find more:

Solve each of the following systems of equations by the method of cross-multiplication:

ax + by = a²

bx + ay = b²

https://brainly.in/question/15918815

Solve each of the following systems of equations by the method of cross-multiplication:

a²x+b²y=c²b²x+a²y=a²

https://brainly.in/question/15918831

Similar questions