Math, asked by drew74, 3 months ago

Solve: ax + by = a - b and bx - ay = a + b Please send the photo of it​

Answers

Answered by Anonymous
124

Step-by-step explanation:

\huge\underline\mathcal{\red{Question:-}}

\impliesSolve: ax + by = a - b and bx - ay = a + b

Taking the LCM of the Left Hand Side we have;

 \frac{ab -  {b}^{2}  -  {b}^{2}y -  {a}^{2} y }{a}  =  a  + b

Moving a to the RHS we have;

ab -  {b}^{2}  -  {b}^{2} y -  {a}^{2} y = a(a + b)

ab -  {b }^{2}  -  {b}^{2} y -  {a}^{2} y =  {a}^{2}  + ab

 -  {b}^{2}  -  {b}^{2} y -  {a}^{2} y =  {a}^{2}  + ab - ab

 -  {b}^{2}  -  {b}^{2} y -  {a}^{2} y =  {a}^{2}

Moving {-b}^{2} to the RHS and taking y common in the LHS we have;

 - y( {b}^{2}  +  {a}^{2} ) =  {a}^{2}  +  {b}^{2}

 - y = 1

y = -1

Now,

Putting the value of y in (3) We have;

x =  \frac{a - b - b( - 1)}{a}

x =  \frac{a - b + b}{a}

x =  \frac{a}{a}

x = 1

Similar questions