solve by applying method of equations reducible to linear equation......plz be fast.......
that person will be followed who will give the right ans
Answers
Solution :-
Given pair of linear equations :
→ 20/(x + y) + 3/(x - y) = 7
→ 8/(x - y) - 15/(x + y) = 5
Sustituting 1/(x + y) = a and 1/(x - y) = b in the equations we get,
→ 20a + 3b = 7 --- eq(1)
→ - 15a + 8b = 5 ---- eq(2)
LCM of 20, 15 is 60
Multiplying eq(1) by 3 and eq(2) by 4 we get,
(20a + 3b = 7) * 3
( - 15a + 8b = 5) * 4
→ 60a + 9b = 21 -- eq(3)
→ - 60a + 32b = 20 --- eq(4)
Adding eq(3) and eq(4)
⇒ 60a + 9b + ( - 60a + 32b ) = 21 + 20
⇒ 60a + 9b - 60a + 32b = 41
⇒ 41b = 41
⇒ b = 41/41 = 1
But, b = 1/(x - y)
⇒ 1/(x - y) = 1
⇒ x - y = 1 --- eq(5)
Substituting b = 1 in eq(1)
⇒ 20a + 3b = 7
⇒ 20a + 3(1) = 7
⇒ 20a + 3 = 7
⇒ 20a = 7 - 3
⇒ 20a = 4
⇒ a = 4/20 = 1/5
But, a = 1/(x + y)
⇒ 1/(x + y) = 1/5
⇒ x + y = 5 -- eq(6)
Adding eq(5) and eq(6)
⇒ x - y + ( x + y ) = 1 + 5
⇒ x - y + x + y = 6
⇒ 2x = 6
⇒ x = 6/2 = 3
Substituting x = 3 in x + y = 5
⇒ 3 + y = 5
⇒ y = 5 - 3 = 2