Math, asked by ak3568540, 1 month ago

solve by cardons method x3-30x+133=0​

Answers

Answered by shristirsvm
5

Step-by-step explanation:

mark me as a branlist!!!!

Attachments:
Answered by mithun890
1

Answer:

One root of the cubic expression x^{3} -30x+133=0 is

          -7,\frac{7+3\sqrt{3} }{2} , \frac{7-3\sqrt{3} }{2}

Step-by-step explanation:

  • Since, imaginary roots occurs in pairs by using the quadratic formula we can find roots by polynomial division,

                      x^{3} -30x+133=0

                     (x^{2} -7x+19)(x+7)=0

  • From (x^{2} -7x+19)=0, we get roots

                       \frac{7+3\sqrt{3} }{2} , \frac{7-3\sqrt{3} }{2}

  • Now lets find real root, let real root be =k

              Sum of root   = \frac{-b}{a} =0

∴ we can write as,

            \frac{7+3\sqrt{3} }{2} + \frac{7-3\sqrt{3} }{2}+k=0

                   k=-7

∴ the real root is -7

Similar questions