Math, asked by Ashishkumar6350, 10 months ago

Solve by Charpit's method : px+qy=z√1+pq​

Answers

Answered by Swarup1998
18

Given: px+qy=z\sqrt{1+pq}

To find:

  • solution by Charpit's method

Solution:

Here the given equation is

F(x,y,z,p,q)=px+qy-z\sqrt{1+pq} .....(1)

∴ Charpit's auxiliary equations are

\dfrac{dp}{\frac{\partial F}{\partial x}+p\frac{\partial F}{\partial z}}=\dfrac{dq}{\frac{\partial F}{\partial y}+q\frac{\partial F}{\partial z}}=\dfrac{dz}{-p\frac{\partial F}{\partial p}-q\frac{\partial F}{\partial q}}\\=\dfrac{dx}{-\frac{\partial F}{\partial p}}=\dfrac{dy}{-\frac{\partial F}{\partial q}}

We take the first two ratios only:

\quad \dfrac{dp}{\frac{\partial F}{\partial x}+p\frac{\partial F}{\partial z}}=\dfrac{dq}{\frac{\partial F}{\partial y}+q\frac{\partial F}{\partial z}}

\Rightarrow \dfrac{dp}{p+p(-\sqrt{1+pq})}=\dfrac{dq}{q+q(-\sqrt{1+pq})}

\Rightarrow \dfrac{dp}{p(1-\sqrt{1+pq})}=\dfrac{dq}{q(1-\sqrt{1+pq})}

\Rightarrow \dfrac{dp}{p}=\dfrac{dq}{q}, where p,q\neq 0

Integrating, we get

\quad \int \dfrac{dp}{p}=\int \dfrac{dq}{q}

\Rightarrow logp=logq+logc, where c is integral constant

\Rightarrow logp=log(cq)

\Rightarrow p=cq .....(2)

Substituting p=cq in (1), we get

\quad cqx+qy=z\sqrt{1+cq^{2}}

Squaring both sides, we get

\quad c^{2}q^{2}+2cxyq^{2}+y^{2}q^{2}=z^{2}(1+cq^{2})

\Rightarrow (c^{2}+2cxy+y^{2}-cz^{2})q^{2}=z^{2}

\Rightarrow \{(cx+y)^{2}-cz^{2}\}q^{2}=z^{2}

\Rightarrow q^{2}=\dfrac{z^{2}}{(cx+y)^{2}-cz^{2}}

\Rightarrow \boxed{q=\dfrac{z}{\sqrt{(cx+y)^{2}-cz^{2}}}}

Putting the value of q in (2), we get

\quad \boxed{p=\dfrac{cz}{\sqrt{(cx+y)^{2}-cz^{2}}}}

Putting these values of p and q in

\quad dz=pdx+qdy, we get

\Rightarrow dz=\dfrac{cz}{\sqrt{(cx+y)^{2}-cz^{2}}}dx\\+\dfrac{z}{\sqrt{(cx+y)^{2}-cz^{2}}}dy

\Rightarrow dz=\dfrac{z}{\sqrt{(cx+y)^{2}-cz^{2}}}(cdx+dy)

\Rightarrow \dfrac{dz}{z}=\dfrac{cdx+dy}{\sqrt{(cx+y)^{2}-cz^{2}}}

Let cx+y=\sqrt{c}t so that

\quad cdx+dy=\sqrt{c}dt

So we have

\quad \dfrac{dz}{z}=\dfrac{\sqrt{c}dt}{\sqrt{ct^{2}-cz^{2}}}

\Rightarrow \dfrac{dz}{z}=\dfrac{\sqrt{c}dt}{\sqrt{c}\sqrt{t^{2}-z^{2}}}

\Rightarrow \dfrac{dz}{z}=\dfrac{dt}{\sqrt{t^{2}-z^{2}}}

\Rightarrow \dfrac{dt}{dz}=\dfrac{\sqrt{t^{2}-z^{2}}}{z}

\Rightarrow \dfrac{dt}{dz}-\dfrac{\sqrt{t^{2}-z^{2}}}{z}=0

\Rightarrow \dfrac{dt}{dz}-\sqrt{(\dfrac{t}{z})^{2}-1}=0 .....(3)

This is a homogeneous equation.

We take: t=vz

Then \dfrac{dt}{dz}=v+z\dfrac{dv}{dz}

Continuing (3), we write

\quad v+z\dfrac{dv}{dz}-\sqrt{v^{2}-1}=0

\Rightarrow z\dfrac{dv}{dz}=\sqrt{v^{2}-1}-v

\Rightarrow \dfrac{dz}{z}=\dfrac{dv}{\sqrt{v^{2}-1}-v}

We multiply the numerator and the denominator of the right hand side of the above equation by the conjugate of \sqrt{v^{2}-1}-v i.e. by \sqrt{v^{2}-1}+v in order to rationalize the denominator:

\quad \dfrac{dz}{z}=\dfrac{\sqrt{v^{2}-1}+v}{(\sqrt{v^{2}-1}-v)(\sqrt{v^{2}-1}+v)}dv

\Rightarrow \dfrac{dz}{z}=\dfrac{\sqrt{v^{2}-1}+v}{v^{2}-1-v^{2}}dv

\Rightarrow \dfrac{dz}{z}=\dfrac{\sqrt{v^{2}-1}+v}{-1}dv

\Rightarrow \dfrac{dz}{z}=-\sqrt{v^{2}-1}dv-vdv

Integrating, we get

\quad \int \dfrac{dz}{z}=-\int \sqrt{v^{2}-1}dv-\int vdv

\Rightarrow logz=-[\dfrac{v(\sqrt{v^{2}-1})}{2}\\-\dfrac{1}{2}log(v+\sqrt{v^{2}-1})]-\dfrac{v^{2}}{2}+k

where k is constant of integration

\Rightarrow logz=-\dfrac{cx+y}{2\sqrt{c}z}\sqrt{(\dfrac{cx+y}{\sqrt{c}z})^{2}-1}\\+\dfrac{1}{2}log[\dfrac{cx+y}{\sqrt{c}z}+\sqrt{(\dfrac{cx+y}{\sqrt{c}z})^{2}-1}]\\-\dfrac{1}{2}(\dfrac{cx+y}{\sqrt{c}z})^{2}+k

where v=\dfrac{cx+y}{\sqrt{c}z}

This is the required solution.

Similar questions