Math, asked by harshit71822, 11 months ago

Solve by completing square method:1/x -1/(x-2)=3

Answers

Answered by Anonymous
4

Solution :-

 \dfrac{1}{x}  -   \dfrac{1}{x - 2}  = 3

Taking LCM

 \implies \dfrac{1(x - 2) - 1(x)}{x(x - 2)}    = 3

 \implies \dfrac{x - 2 - x}{ {x}^{2}  - 2x}    = 3

 \implies \dfrac{- 2}{ {x}^{2}  - 2x}    = 3

⇒ - 2 = 3(x² - 2x)

⇒ - 2 = 3x² - 6x

⇒ 3x² - 6x = - 2

Now, solve the equation by completing the square method

Divide throughout by 3

 \implies \dfrac{3 {x}^{2} }{3}  -  \dfrac{6x}{3}  = -   \dfrac{2}{3}

 \implies  {x}^{2}  - 2x = -   \dfrac{2}{3}

It can be written as

 \implies  {x}^{2}  - 2(x)(1) = -   \dfrac{2}{3}

Adding 1² on both sides

 \implies  {x}^{2}  - 2(x)(1) +  {1}^{2}  = -   \dfrac{2}{3}  +  {1}^{2}

 \implies  (x - 1)^{2} = -   \dfrac{2}{3}  +  1

[ Because (a - b)² = a² - 2ab + b² ]

 \implies  (x - 1)^{2} =  \dfrac{ - 2 + 3}{3}

 \implies  (x - 1)^{2} =  \dfrac{1}{3}

Taking square root on both sides

 \implies  \sqrt{ (x - 1)^{2} }=    \pm \sqrt{\dfrac{1}{3}  }

 \implies x - 1=    \pm \dfrac{1}{ \sqrt{3} }

 \implies x - 1=  \dfrac{1}{ \sqrt{3} }   \qquad or \qquad x - 1 =  -  \dfrac{1}{ \sqrt{3} }

 \implies x = 1 +  \dfrac{1}{ \sqrt{3} }   \qquad or \qquad x=  1-  \dfrac{1}{ \sqrt{3} }

 \implies x = \dfrac{ \sqrt{3} +  1}{ \sqrt{3} }   \qquad or \qquad x=  \dfrac{ \sqrt{3} -  1}{ \sqrt{3} }

Hence, (√3 + 1)/√3 and (√3 - 1)/√3 are the roots of the equation.

Similar questions