Math, asked by rambman01, 9 months ago

Solve by completing the square method
2q - 3 / 5 = 2 (2q-3) / 3q.

Answers

Answered by sanketj
0

 2q -  \frac{3}{5}  =  \frac{2(2q - 3)}{3q}  \\  \frac{10q - 3}{5}  =  \frac{4q - 6}{3q}  \\ (10q - 3)(3q) = (4q - 6)(5) \\ 30 {q}^{2}  - 9q = 20q - 30 \\ 30 {q}^{2}  - 9q - 20q + 30 = 0 \\ 30 {q}^{2}  - 29q + 30 = 0   \\  \\ solving \: by \: completing \: square \:  \\ we \: take \: the \: constant \: to \: rhs \: and \: make \:  \\ coefficient \: of \:  {q}^{2} as \: 1 \\  \\ 30 {q}^{2}  - 29q =  - 30 \\  \\ dividing \: throughout \: by \: 30 \\  \\  {q}^{2}  -  \frac{29}{30} q =  - 1 \\  \\ adding \:  {( \frac{1}{2} b)}^{2} =   \frac{ {b}^{2} }{4}  =   \frac{  { (\frac{ - 29}{30} )}^{2}  }{4}  =  \frac{ \frac{841}{900} }{4}  =  \frac{841}{3600}  \\ on \: both \: sides \\  \\  {q}^{2}  -  \frac{29}{30} q +  \frac{841}{3600}  =  - 1 \\  {(q)}^{2}  - 2(q)( \frac{29}{60} ) +  {( \frac{29}{60}) }^{2}  =  - 1 \\  {(q -  \frac{29}{60}) }^{2}  =  - 1 \\ q -  \frac{29}{60} = +   \sqrt{ - 1}  \:  \:  \:  \: or \:  \:  \:    -  \sqrt{ - 1}   \\ q =   \sqrt{ - 1}  +  \frac{29}{60} \:  \:  \:  \: or \:  \:  \:  \:  \frac{29}{60}   -  \sqrt{ - 1}  \\  \\  \sqrt{ - 1} \:  is \: an \: imaginary \: number \\ hence \: the \: roots \: of \: the \:given \: equations \: are \:  \\ complex

*if you're in 11th standard or higher, the further steps apply for you to solve too*

q =    \frac{29}{60}  +  \sqrt{ - 1}   \:  \:  \:  \: or \:  \:  \:  \: \frac{29}{60} -  \sqrt{ - 1}   \\ q =  \frac{29}{60}  + i \:  \:  \: \:  \:  or \:  \:  \:  \:  \:  \frac{29}{60}  - i\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... \: (i =  \sqrt{ - 1} ) \\ q =  \frac{29 + 60i}{60}  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \frac{29 - 60i}{60}

Similar questions