Math, asked by dhruv123kr, 1 year ago

Solve by completing the square method

Attachments:

Answers

Answered by mysticd
0

 \underline {\pink { Completing \:Square \: Method : }}

 Given \: Quadratic \: Equation :\\4x^{2} - \sqrt{3}x - 5 = 0

 \implies 4x^{2} - \sqrt{3}x = 5

/* Dividing each term by 4,we get */

 \implies x^{2} - \frac{\sqrt{3}}{4} x = \frac{5}{4}

 \implies x^{2} - 2 \times \frac{\sqrt{3}}{8} x = \frac{5}{4}

 \implies x^{2} - 2 \times \frac{\sqrt{3}}{8} x + \Big(\frac{\sqrt{3}}{8}\Big)^{2}  = \frac{5}{4}+ \Big(\frac{\sqrt{3}}{8}\Big)^{2}

 \implies \Big ( x - \frac{\sqrt{3}}{8} )\Big)^{2} = \frac{5}{4} + \frac{3}{64}

 \implies \Big ( x - \frac{\sqrt{3}}{8} )\Big)^{2} = \frac{80 + 3}{64}

 \implies \Big ( x - \frac{\sqrt{3}}{8} )\Big)^{2} = \frac{83}{64}

 \implies \Big ( x - \frac{\sqrt{3}}{8} )\Big)^{2} = \pm \sqrt{ \frac{83}{64}}

 \implies  x - \frac{\sqrt{3}}{8}  = \pm \sqrt{ \frac{83}{64}}

 \implies  x = \frac{\sqrt{3}}{8}  \pm  \frac{\sqrt{83}}{8}

 \implies  x = \frac{\sqrt{3}\pm \sqrt{83}}{8}

Therefore.,

 \green { x = \frac{\sqrt{3}+\sqrt{83}}{8} \:Or \: </p><p>\frac{\sqrt{3}- \sqrt{83}}{8} }

•••♪

Answered by Rpfriend
0

Answer:

Step-by-step explanation:

Attachments:
Similar questions