Math, asked by din2020, 5 months ago

Solve by completing the square method=
4x^2+4√3x+3​

Answers

Answered by aditiv710
1

Answer:

I hope it helpful.......

Attachments:
Answered by ojaswa67
6

Answer:

↪x =  -  \frac{ \sqrt{3} }{2} and \: x =  -  \frac{ \sqrt{3} }{2}

✵Step by step explanation

↪given \: equation \: is \:  {4x}^{2}  + 4 \sqrt{3} x + 3 = 0 \\↪ on \: dividing \: both \: sides \: by \: 4 \: we \: get \\ ↪ {x}^{2}  +  \sqrt{3} x +  \frac{3}{4}  = 0 \\↪  {x}^{2}  + \sqrt{3x}  =  -  \frac{3}{4}  \\ ↪on \: adding \:  ({ \frac{1}{2}  \: coefficient \: of \: x})^{2}  \\ ↪i.e. \\↪ ({ \frac{1}{2}  \sqrt{3} })^{2}  =  \frac{3}{4} both \: sides \: we \: get \\  ↪{x}^{2}  +  \sqrt{3} x +  \frac{3}{4}  =  -  \frac{3}{4}  +  \frac{3}{4}  \\ ↪( {x +  \frac{ \sqrt{3} }{2} )}^{2}  = 0

↪on \: taking \: sqr.root \: both \: sides \: we \: get \\↪ x +  \frac{3}{2}  = 0 \: and \: x +  \frac{ \sqrt{3} }{2}  = 0 \\ ↪x =  -  \frac{ \sqrt{3} }{2} and \: x =  -  \frac{ \sqrt{3} }{2}  \\ ↪ \: hence \: roots \: of \: equation \: are  \\ \: ↪x =  -  \frac{ \sqrt{3} }{2} and \: x =  -  \frac{ \sqrt{3} }{2}

Original answer☑

Similar questions