Math, asked by sanjana93652, 1 month ago

solve by cramers rule 2x+3y= 5 3x-2y=1​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:2x + 3y = 5

and

\rm :\longmapsto\:3x - 2y = 1

The above equation in matrix form can be represented as

\rm :\longmapsto\:A = \bigg[ \begin{matrix}2&3 \\ 3& - 2 \end{matrix} \bigg]

\rm :\longmapsto\:\begin{gathered}\sf B=\left[\begin{array}{c}5\\1\end{array}\right]\end{gathered}

\rm :\longmapsto\:\begin{gathered}\sf X=\left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}

So, that AX = B

Now,

\rm :\longmapsto\: |A|  = \begin{array}{|cc|}\sf 2 &\sf 3  \\ \sf 3 &\sf  - 2 \\\end{array}

\rm \:  =  \:  \:  - 2 \times 2 - 3 \times 3

\rm \:  =  \:  \:  - 4 - 9

\rm \:  =  \:  \:  - 13

\bf\implies \: |A|  =  - 13

It implies, system of equations is consistent having unique solution.

Now, Consider

\rm :\longmapsto\: D_1  = \begin{array}{|cc|}\sf 5 &\sf 3  \\ \sf 1 &\sf  - 2 \\\end{array}

\rm \:  =  \:  \:  - 2 \times 5 - 1 \times 3

\rm \:  =  \:  \:  - 10 - 3

\rm \:  =  \:  \:  - 13

\bf\implies \:D_1 =  - 13

Now, Consider

\rm :\longmapsto\: |D_2|  = \begin{array}{|cc|}\sf 2 &\sf 3  \\ \sf 5 &\sf  1 \\\end{array}

\rm \:  =  \:  \: 1 \times 2 - 5 \times 3

\rm \:  =  \:  \: 2 - 15

\rm \:  =  \:  \:  - 13

\bf\implies \:D_2 =  - 13

Hence,

\rm :\longmapsto\:x = \dfrac{D_1}{ |A| }  = \dfrac{ - 13}{ - 13} = 1

\rm :\longmapsto\:y = \dfrac{D_2}{ |A| }  = \dfrac{ - 13}{ - 13} = 1

Verification :-

Consider the first line

\rm :\longmapsto\:2x + 3y = 5

On substituting the values of x and y, we get

\rm :\longmapsto\:2(1) + 3(1) = 5

\rm :\longmapsto\:2 + 3 = 5

\rm :\longmapsto\:5 = 5

Hence, Verified

Consider the second line :

\rm :\longmapsto\:3x - 2y = 1

On substituting the values of x and y, we get

\rm :\longmapsto\:3(1) - 2(1) = 1

\rm :\longmapsto\:3 - 2 = 1

\rm :\longmapsto\:1= 1

Hence, Verified

Similar questions