Math, asked by sonaj65, 3 months ago

solve by crammer's rule 5x-3y=24,-7x+11y=14​

Answers

Answered by Seafairy
47

Given :

  • \sf 5x-3y=-24
  •  \sf -7x+11y=14

To Find :

  • Find The values of x and y using Cramer's Rule

Formulas Applied :

\underline{\boxed{\sf x = \dfrac{\triangle _x }{\triangle}, y = \dfrac{\triangle_y}{\triangle}}}

Solution :

Given Equations are,

\sf 5x-3y=-24

 \sf -7x+11y=14

Then the equations in the matrix form,

\sf \begin {bmatrix}5&-3\\-7&11\end{bmatrix} \begin {bmatrix}x\\y \end{bmatrix} = \begin {pmatrix} 24\\14 \end {pmatrix}

Calculating ,

\triangle = \sf \begin {vmatrix} 5&-3\\-7&11\end{vmatrix}\\\\\triangle = \sf \Big(55-(21)\Big)\\\\\triangle = \sf 55-21\\\\ \boxed{\triangle \bf= 34}

\triangle \neq 0, Hence solution exists.

\triangle_x = \sf \begin {vmatrix} 24&-3\\14&11\end{vmatrix}\\\\\triangle_x= \sf \Big(264-(42)\Big)\\\\\triangle_x= \sf 264+42\\\\\boxed{\bf \triangle_x = 306}

\triangle_y = \sf \begin {vmatrix}5&24\\-7&14\end{vmatrix}\\\\\triangle_y= \sf \Big(70-(-168)\Big)\\\\\triangle_y= \sf 70+168\\\\\boxed{\bf \triangle_y = 238}\\

Substituting the values,

\longrightarrow \sf x = \dfrac{\triangle _x }{\triangle} \Rightarrow \dfrac{306}{34}\Rightarrow 9\\\\ \longrightarrow \sf y = \dfrac{\triangle _y}{\triangle} \Rightarrow \dfrac{238}{34}\Rightarrow 7

Required Answer :

\boxed{\boxed{\[\sf (x,y) = (9,7)\]}}

Answered by RISH4BH
15

GiveN :-

  • Two linear equations are given
  • \sf 5x -3y = 24
  • \sf -7x + 11y = 14

To FinD :-

  • The value of x and y by Crammer's Rule .

SolutioN :-

Crammer's Rule is a method to solve a system of linear equations using the concept of determinants . We can write the system of linear equations as in AX = B form using matrices .

\sf\dashrightarrow\underset{\blue{\sf AX = B \ form }}{\underbrace{ \left[\begin{array}{cc}\sf 5&\sf -3\\\sf -7&\sf 11 \end{array} \right]\left[\begin{array}{c} \sf x \\\sf y \end{array}\right] =\left[\begin{array}{c} \sf 24 \\\sf 14 \end{array}\right] }}

On comparing them wrt AX = B :-

\sf\to \red{A = \left[\begin{array}{cc}\sf 5 &\sf -3\\\sf -7&\sf 11 \end{array}\right] }

\sf \to\red{ B = \left[\begin{array}{c} \sf 24 \\\sf 14 \end{array}\right] }

Secondly define two matrices \sf B_1\: \& \ B_2 such that , The first matrix is obtained by replacing first column of matrix A with column B . In similar manner second matrix is obtained by replacing column two of matrix A by the column in B .

\sf\to \pink{B_1 = \left[\begin{array}{cc}\sf  24&\sf -3\\\sf 14 &\sf 11 \end{array}\right] }

\sf\to \pink{B_2 = \left[\begin{array}{cc}\sf 5 &\sf 24\\\sf -7&\sf 14 \end{array}\right] }

\rule{200}2

\red{\bigstar}\underline{\textsf{ The value of x will be determined by :- }}

\sf \to x =\dfrac{ det.(B_1)}{det .(A)}=\dfrac{|B_1|}{|A|}

\sf\to x =\dfrac{\begin{array}{|cc|} \sf 24 &\sf -3\\\sf 14 &\sf 11 \end{array}}{\begin{array}{|cc|} \sf 5 &\sf -3\\\sf -7 &\sf 11 \end{array}} \\\\\sf\to x = \dfrac{(11)(24)-[(-3)(14)]}{(14)(5)-[(-7)(-3)]}\\\\\sf\to x = \dfrac{264+42}{55-21}\\\\\sf\to x =\dfrac{306}{34}\\\\\sf \to \pink{x = 9 }\qquad\qquad\bigg\lgroup \red{\tt Required\ value \ of \ x .}\bigg\rgroup

\rule{200}2

\red{\bigstar}\underline{\textsf{ The value of y will be determined by :- }}

\sf \to y =\dfrac{ det.(B_2)}{det .(A)}=\dfrac{|B_2|}{|A|}

\sf\to y =\dfrac{\begin{array}{|cc|} \sf 5 &\sf 24\\\sf -7 &\sf 14 \end{array}}{\begin{array}{|cc|} \sf 5 &\sf -3\\\sf -7 &\sf 11 \end{array}} \\\\\sf\to y = \dfrac{(14)(5)-[(-7)(24)]}{(14)(5)-[(-7)(-3)]}\\\\\sf\to y= \dfrac{70+168}{55-21}\\\\\sf\to y=\dfrac{238}{34}\\\\\sf \to \pink{y = 7}\qquad\qquad\bigg\lgroup \red{\tt Required\ value \ of \ y .}\bigg\rgroup

\rule{200}2

Attachments:
Similar questions