Math, asked by misscutegirl076, 1 month ago

solve by cremer' s rule 3 x- 4 y=10 ,4 x+3 y=5.​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:3x - 4y = 10

and

\rm :\longmapsto\:4x + 3y = 5

Its matrix form is

\rm :\longmapsto\:\bigg[ \begin{matrix}3&  -  4 \\ 4&3 \end{matrix} \bigg] \: \begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{c}10\\5\end{array}\right]\end{gathered}

So,

\rm :\longmapsto\:A = \bigg[ \begin{matrix}3& - 4 \\ 4&3 \end{matrix} \bigg]

\rm :\longmapsto\:B = \begin{gathered}\sf \left[\begin{array}{c}10\\5\end{array}\right]\end{gathered}

\rm :\longmapsto\:X = \begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}

So, that

\rm :\longmapsto\:\boxed{ \tt{ \: AX = B \:  \: }}

Now, Consider

\rm :\longmapsto\: |A|

\rm \:  =  \: \begin{array}{|cc|}\sf 3 &\sf  - 4  \\ \sf 4 &\sf  3 \\\end{array}

\rm \:  =  \:9 - ( - 16)

\rm \:  =  \:9  +  16

\rm \:  =  \:25

This implies, System of equations is consistent having unique solution.

So,

Consider,

\rm :\longmapsto\: D_1  = \begin{array}{|cc|}\sf 10 &\sf  - 4  \\ \sf 5 &\sf 3 \\\end{array}

\rm \:  =  \:30 - ( - 20)

\rm \:  =  \:30  + 20

\rm \:  =  \:50

Consider,

\rm :\longmapsto\: D_2  = \begin{array}{|cc|}\sf 3 &\sf 10  \\ \sf 4 &\sf 5 \\\end{array}

\rm \:  =  \:15 - 40

\rm \:  =  \: - 25

So, we have

\rm :\longmapsto\: |A| = 25

\rm :\longmapsto\:D_1 = 50

\rm :\longmapsto\:D_2 =  - 25

So,

\bf\implies \:x = \dfrac{D_1}{ |A| } = \dfrac{50}{25} = 2

and

\bf\implies \:x = \dfrac{D_2}{ |A| } = -  \dfrac{25}{25} =  -  \: 1

Hence, Solution is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{x \:  =  \: 2} \\ &\sf{y \:  =  \:  -  \: 1} \end{cases}\end{gathered}\end{gathered}

Similar questions