Math, asked by bgjyothi56, 2 months ago

solve by cross multiplication method 2x-5y-12=0 and 4x+6y-14=0​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given pair of linear equations are .

\rm :\longmapsto\:2x - 5y - 12 = 0 -  -  - (1)

and

\rm :\longmapsto\:4x + 6y - 14 = 0 -  -  - (2)

Now,

Equations (1) and (2) can be rewritten as

\rm :\longmapsto\:2x - 5y = 12 -  -  - (3)

and

\rm :\longmapsto\:2x + 3y = 7 -  -  - (4)

Now, using Cross multiplication method, we have

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  - 5 & \sf 12 & \sf 2 & \sf  - 5\\ \\ \sf 3 & \sf 7 & \sf 2 & \sf 3\\ \end{array}} \\ \end{gathered}

So,

\rm :\longmapsto\:\dfrac{x}{ - 35 - 36}  = \dfrac{y}{24 - 14}  = \dfrac{ - 1}{6 - ( - 10)}

\rm :\longmapsto\:\dfrac{x}{ - 71}  = \dfrac{y}{10}  = \dfrac{ - 1}{16}

\rm :\longmapsto\:\dfrac{x}{ - 71}  = \dfrac{y}{10}  = \dfrac{1}{ - 16}

Taking first and third member, we get

\rm :\longmapsto\:\dfrac{x}{ - 71}    = \dfrac{1}{ - 16}

\bf\implies \:x = \dfrac{71}{16}

Now, Taking second and third member, we get

\rm :\longmapsto\: \dfrac{y}{10}  = \dfrac{1}{ - 16}

\rm :\longmapsto\: y  = \dfrac{10}{ - 16}

\rm :\longmapsto\: y  = -  \:  \dfrac{10}{16}

\bf\implies \:y =  -  \: \dfrac{5}{8}

So, Solution of equations

\rm :\longmapsto\:2x - 5y - 12 = 0

and

\rm :\longmapsto\:4x + 6y - 14 = 0

is

\bf\implies \: \boxed{ \bf{x = \dfrac{71}{16} }}

and

\bf\implies \: \boxed{ \bf{y =  -  \: \dfrac{5}{8} }}

Verification :-

The given first equation is

\rm :\longmapsto\:2x - 5y - 12 = 0

On substituting the values of x and y, we get

\rm :\longmapsto\:2 \times \dfrac{71}{16}  - 5 \times \dfrac{ - 5}{8}  - 12 = 0

\rm :\longmapsto\: \dfrac{142}{16}   +  \dfrac{25}{8}  - 12 = 0

\rm :\longmapsto\: \dfrac{142 + 50 - 192}{16}  = 0

\rm :\longmapsto\: \dfrac{192 - 192}{16}  = 0

\rm :\longmapsto\: \dfrac{0}{16}  = 0

\bf\implies \:0 = 0

Hence, Verified

Consider, second equation,

\rm :\longmapsto\:4x + 6y - 14 = 0

On substituting the values of x and y, we have

\rm :\longmapsto\:4 \times \dfrac{71}{16}  + 6 \times \dfrac{ - 5}{8}  - 14 = 0

\rm :\longmapsto\: \dfrac{71}{4}   - \dfrac{15}{4}  - 14 = 0

\rm :\longmapsto\: \dfrac{71 - 15 - 56}{4}   = 0

\rm :\longmapsto\: \dfrac{56 - 56}{4}   = 0

\rm :\longmapsto\: \dfrac{0}{4}   = 0

\bf\implies \:0 = 0

Hence, Verified

Similar questions