Math, asked by mdsbazam786, 7 months ago

solve by cross Multiplication method :
3x + 14y=5xy,21y-x=2xy.​

Answers

Answered by Mohit101172
12

Step-by-step explanation:

3x+14y=5xy......(1)

21y-x=2xy.... Rearranging

-x+21y=2xy .....(2)

Multiplying equ (1) by 21 & equ (2) by 14, we get

63x+294y=105xy.....(3)

-14x+294y=28xy......(4)

Subtracting equ (3) & equ (4),

63x+294y=105xy

- -14x+294y=28xy

77x+0y=77xy

77x=77xy

=77xy

77x

y=1

Substituting the value of y=1 in equ (1),

3x+14y=5xy

3x+14(1)=5x(1)

3x+14=5x

5x - 3x = 14

2x= 14

x = 14

2

x= 7

Therefore, (x,y) = (7,1)

If you like my answer then Like, comment and vote

Always Stay Positive and Stay Happy

Answered by aayyuuss123
8

Step-by-step explanation:

\huge \boxed{\underbrace{\mathfrak {\underline  {\fcolorbox {black}{pink}{Answer}}}}}

{  3x+14y=5xy ........(1)  }

{ 21y-x=2xy    }

\implies {   -x+21y=2xy.......(2) }

multiplying equation1 by 21 and equation2 by 14,We get....

{   63x+294y=105xy.............(3)  }

{   -14x+294y=28xy...............(4)  }

solving the two equation3 and 4, we got that..

\implies {   y=1  }

then put the value { y=1    }In equation 1

{  3x+14y=5xy   }

\implies {3x+14=5x     }

\implies {    5x-3x=14 }

\implies { 2x=14    }

\implies {   x=\frac{14}{2} }

\implies { x=7    }

we got the value {(x,y )    }={( 7,1 )   }

Similar questions