Math, asked by daris52, 1 day ago

solve by cross multiplication method. x+y=a+b,ax-by=a^2-b^2​

Answers

Answered by kanishkasarang007
0

Answer:

The given system of equations may be written as

x+y−(a+b)=0

ax−by−(a

2

−b

2

)=0

By cross-multiplication, we get

−(a

2

−b

2

)−(−b)×−(a+b)

x

=

−(a

2

−b

2

)−a×−(a+b)

−y

=

1×−b−a×1

1

−a

2

+b

2

−ab−b

2

x

=

−a

2

+b

2

+a

2

+ab

−y

=

−b−a

1

−a(a+b)

x

=

b(a+b)

−y

=

−(a+b)

1

−a(a+b)

x

=

−b(a+b)

y

=

−(a+b)

1

⇒x=

−(a+b)

−a(a+b)

=a and y=

−(a+b)

−b(a+b)

=b

Hence, the solution of the given system of equations is x=a,y=b.

Step-by-step explanation:

I hope it's helpful mark me as brainliest please

Answered by hukam0685
1

Step-by-step explanation:

Given:

x + y = a + b \\ ax - by =  {a}^{2} -  {b}^{2}   \\

To find: Solve linear equations using cross multiplication method.

Solution:

If a_1x+b_1y+c_1=0 and a_2x+b_2y+c_2=0 are linear equations in two variables, then

using cross multiplication method

\frac{x}{b_1c_2-b_2c_1}=\frac{y}{a_2c_1-a_1c_2}=\frac{1}{a_1b_2-a_2b_1}\\

or

\boxed{\bold{x=\frac{b_1c_2-b_2c_1}{a_1b_2-a_2b_1}}}\\\\\boxed{\bold{y=\frac{a_2c_1-a_1c_2}{a_1b_2-a_2b_1}}}\\\\

here

a_1=1,b_1=1,c_1=-a-b\\\\a_2=a,b_2=-b,c_2=-a^2+b^2\\\\

Put these values in formula

x=\frac{b_1c_2-b_2c_1}{a_1b_2-a_2b_1} \\  \\ x =  \frac{ -  {a}^{2}  +  {b}^{2}   + b( - a - b)}{ - b - a}  \\  \\ x =  \frac{ -  {a}^{2} +  {b}^{2}   - ab -  {b}^{2} }{ - (a + b)}  \\  \\ x =  \frac{ - a(a + b)}{- (a + b)}  \\  \\ \bold{x = a} \\

Same way, put the coefficients to find y

y=\frac{a_2c_1-a_1c_2}{a_1b_2-a_2b_1}\\\\y =  \frac{  a( - a - b)  -(-  {a}^{2} +  {b}^{2})  }{- (a + b)}  \\  \\ y =  \frac{ -  {a}^{2} - ab    +  {a}^{2}   -  {b}^{2} }{- (a + b)}  \\  \\ y =  \frac{ - b(a + b)}{ - (a + b)}  \\  \\\bold{y =  b} \\ \\

Final answer:

\bold{\red{x = a}} \\ \bold{\green{y =   b}} \\

Hope it helps you.

To learn more:

If the system of equation 3×+2y-7=0 and k×+2y+11=o has unique solution then

https://brainly.in/question/45012709

Similar questions