Solve by Elimination by equating Coefficients method
5. ax + by = c ;
bx + ay = 1 + c
Class 10
Content Quality Solution Required
❎ Don't Spamming ❎
Answers
Answered by
67
Here is your solution :
⇒ ax + by = c -------- ( 1 )
⇒ bx + ay = 1 + c -------- ( 2 )
Multiply the eq'n( 1 ) by ' a ',
⇒ a( ax + by ) = ac
⇒ a²x + aby = ac ------ ( 3 )
Multiply the eq'n ( 2 ) by 'b',
⇒b( bx + ay ) = b( 1 + c )
⇒ b²x + aby = b + bc ------ ( 4 )
Subtract the eq'n ( 4 ) from eq'n ( 3 ),
⇒ a²x + aby - b²x - aby = ac - b - bc
⇒ a²x - b²x = ac - bc - b
⇒ x( a² - b² ) = ac - bc - b
•°• x = [ ac - bc - b ] / ( a² - b² )
Substitute the value of ' x ' in eq'n( 1 ),
⇒ ax + by = c
⇒ a[ ( ac - bc - b ) / ( a² - b² ) ] + by = c
⇒ [ ( a²c - abc - ab ) / ( a² - b² ) ] + by = c
⇒ by = c - [ ( a²c - abc - ab ) / ( a² - b² ) ]
⇒ by = [ a²c - b²c - a²c + abc + ab ] / ( a² - b² )
⇒ by = ( abc + ab - b²c ) / ( a² - b² )
⇒ by = b( ac + a - bc ) / ( a² - b² )
⇒ y = [ b( ac + a - bc ) ] / [ b( a² - b² ) ]
•°• y = ( ac + a - bc ) / ( a² - b² )
Hence,
⇒ x = ( ac - bc - b ) / ( a² - b² )
⇒ y = ( ac - bc + a ) / ( a² - b² )
Hope it helps !!
⇒ ax + by = c -------- ( 1 )
⇒ bx + ay = 1 + c -------- ( 2 )
Multiply the eq'n( 1 ) by ' a ',
⇒ a( ax + by ) = ac
⇒ a²x + aby = ac ------ ( 3 )
Multiply the eq'n ( 2 ) by 'b',
⇒b( bx + ay ) = b( 1 + c )
⇒ b²x + aby = b + bc ------ ( 4 )
Subtract the eq'n ( 4 ) from eq'n ( 3 ),
⇒ a²x + aby - b²x - aby = ac - b - bc
⇒ a²x - b²x = ac - bc - b
⇒ x( a² - b² ) = ac - bc - b
•°• x = [ ac - bc - b ] / ( a² - b² )
Substitute the value of ' x ' in eq'n( 1 ),
⇒ ax + by = c
⇒ a[ ( ac - bc - b ) / ( a² - b² ) ] + by = c
⇒ [ ( a²c - abc - ab ) / ( a² - b² ) ] + by = c
⇒ by = c - [ ( a²c - abc - ab ) / ( a² - b² ) ]
⇒ by = [ a²c - b²c - a²c + abc + ab ] / ( a² - b² )
⇒ by = ( abc + ab - b²c ) / ( a² - b² )
⇒ by = b( ac + a - bc ) / ( a² - b² )
⇒ y = [ b( ac + a - bc ) ] / [ b( a² - b² ) ]
•°• y = ( ac + a - bc ) / ( a² - b² )
Hence,
⇒ x = ( ac - bc - b ) / ( a² - b² )
⇒ y = ( ac - bc + a ) / ( a² - b² )
Hope it helps !!
Mylo2145:
nyc one
Answered by
61
ax + by = c --1equation
bx + ay = ( 1 + c ) --2equation
Hence, it will be :
abx + b²y = cb ---3equation
abx + a²y = a + ac ---4equation
abx + b²y = cb
abx + a²y = ( a + ac )
-__(-)____(-)_______
b²y - a²y = cb - a - ac
________________
abx will cancel, we get
=> y( b² - a² ) = c( b - a ) - a
=> y( b - a ) ( b + a ) = cb - ca - a
Putting the value of y in 1equation,
=> ax + by = c
x = [ - ca² + abc + ab ] / [ a( b - a ) ( b + a ) ]
x = [ a( - ca+ bc + b ) ] / [ a( b - a ) ( b + a )]
x = ( bc + b - ca ) /[ ( b - a ) ( b + a )]
bx + ay = ( 1 + c ) --2equation
Hence, it will be :
abx + b²y = cb ---3equation
abx + a²y = a + ac ---4equation
abx + b²y = cb
abx + a²y = ( a + ac )
-__(-)____(-)_______
b²y - a²y = cb - a - ac
________________
abx will cancel, we get
=> y( b² - a² ) = c( b - a ) - a
=> y( b - a ) ( b + a ) = cb - ca - a
Putting the value of y in 1equation,
=> ax + by = c
x = [ - ca² + abc + ab ] / [ a( b - a ) ( b + a ) ]
x = [ a( - ca+ bc + b ) ] / [ a( b - a ) ( b + a )]
x = ( bc + b - ca ) /[ ( b - a ) ( b + a )]
Similar questions