Solve by 'Elimination by equating Coefficients' method
;
Class 10
⭐Content Quality Solution Required
❎ Don't Spamming ❎
Answers
Answered by
7
Given Equation is a^2x + b^2y = c^2 ------ (1)
Gievn Equation is b^2x + a^2y = d^2 ------- (2)
On solving (1) * a^2 & (2) * b^2, we get
= > a^4x + b^2a^2y = c^2a^2
= > b^4x + b^2a^2y = d^2b^2
--------------------------------------------
(a^4 - b^4)x = (c^2a^2 - d^2b^2)
x = (c^2a^2 - d^2b^2)/a^4 - b^4.
Substitute x in (2), we get
= > b^2x + a^2y = d^2
= > a^2y = d^2 - b^2x
= > a^2y = d^2 - b^2[c^2a^2 - d^2b^2/a^4 - b^4]
= > y = d^2 - [b^2(c^2a^2 - d^2b^2/a^4 - b^4)]/a^2
= > y = d^2(a^4 - b^4) - b^2(a^2c^2 - d^2b^2)/a^2(a^4 - b^4)
= > y = a^4d^2 - b^4d^2 - b^2a^2c^2 + b^4/(a^2(a^4 - b^4))
= > y = a^4d^2 - a^2b^2c^2/a^2(a^4 - b^4)
= > y = a^2(a^2d^2 - b^2c^2)/a^2(a^4 - b^4)
= > y = (a^2d^2 - b^2c^2)/(a^4 - b^4).
Hope this helps!
siddhartharao77:
:-)
Similar questions