Math, asked by VijayaLaxmiMehra1, 1 year ago

Solve by 'Elimination by equating Coefficients' method

3.) \: a {}^{2} x + b {}^{2} y = c {}^{2}
;

b {}^{2} x + a {}^{2} y  = d {}^{2}

Class 10


⭐Content Quality Solution Required

❎ Don't Spamming ❎

Answers

Answered by siddhartharao77
7

Given Equation is a^2x + b^2y = c^2 ------ (1)


Gievn Equation is b^2x + a^2y = d^2 ------- (2)


On solving (1) * a^2 & (2) * b^2, we get


= > a^4x + b^2a^2y = c^2a^2


= > b^4x + b^2a^2y = d^2b^2

--------------------------------------------


(a^4 - b^4)x = (c^2a^2 - d^2b^2)


x = (c^2a^2 - d^2b^2)/a^4 - b^4.



Substitute x in (2), we get


= > b^2x + a^2y = d^2


= > a^2y = d^2 - b^2x


= > a^2y = d^2 - b^2[c^2a^2 - d^2b^2/a^4 - b^4]


= > y = d^2 - [b^2(c^2a^2 - d^2b^2/a^4 - b^4)]/a^2


= > y = d^2(a^4 - b^4) - b^2(a^2c^2 - d^2b^2)/a^2(a^4 - b^4)


= > y = a^4d^2 - b^4d^2 - b^2a^2c^2 + b^4/(a^2(a^4 - b^4))


= > y = a^4d^2 - a^2b^2c^2/a^2(a^4 - b^4)


= > y = a^2(a^2d^2 - b^2c^2)/a^2(a^4 - b^4)


= > y = (a^2d^2 - b^2c^2)/(a^4 - b^4).




Hope this helps!


siddhartharao77: :-)
Similar questions