Math, asked by jasvinder58, 1 year ago

Solve by elimination method:
x +  \frac{y}{2} = 4 \: and \:  \frac{x}{3} + 2y = 5

Answers

Answered by Anonymous
7

First Equation :

\mathrm{\clubsuit\;\;\;x + \dfrac{y}{2} = 4}

\mathrm{\longrightarrow \dfrac{2x + y}{2} = 4}

\mathrm{\longrightarrow 2x + y = 8\;----\;(1)}

Second Equation :

\mathrm{\clubsuit\;\;\;\dfrac{x}{3} + 2y= 5}

\mathrm{\longrightarrow \dfrac{x + 6y}{3} = 5}

\mathrm{\longrightarrow x + 6y = 15}

Multiply above equation with 2

\mathrm{\longrightarrow 2x + 12y = 30\;-----\;(2)}

Subtract Equation (1) from Equation (2)

\mathrm{\longrightarrow [2x + 12y] - [2x + y] = 30 - 8}

\mathrm{\longrightarrow 2x + 12y - 2x - y = 22}

\mathrm{\longrightarrow 11y = 22}

\mathrm{\longrightarrow y = 2}

Substitute value of y in Equation (1) to get the value of x

\mathrm{\longrightarrow 2x + 2 = 8}

\mathrm{\longrightarrow 2x = 8 - 2}

\mathrm{\longrightarrow 2x = 6}

\mathrm{\longrightarrow x = 3}

\mathbf{\therefore\;\;x = 3\;\;and\;\;y = 2}


Swarup1998: Nice work!
Similar questions