Math, asked by VijayaLaxmiMehra1, 1 year ago

Solve by factoring: from Quadratic equation

4. \:  \:  \frac{2}{x + 1}  -  \frac{4}{2x - 7}  =  \frac{3}{2 - x}
; x # - 1, 7/2 , 2

Standard:- 10

Content Quality Answer Required

❎Don't Spamming❎

Answers

Answered by siddhartharao77
16
The answer is (1/2), (5).


Hope it helps!
Attachments:

siddhartharao77: :-)
VijayaLaxmiMehra1: Right answer ☺☺ Thanks
siddhartharao77: Welcome!
DESICREW: bro plz inbox me and please help me
siddhartharao77: ok!
DESICREW: plz bro fast
Answered by QGP
14
\frac{2}{x+1} -\frac{4}{2x-7} = \frac{3}{2-x} \\ \\ \\ \implies \frac{2(2x-7)-4(x+1)}{(x+1)(2x-7)} = \frac{3}{2-x} \\ \\ \\ \implies \frac{4x-14-4x-4}{2x^2-7x+2x-7} = \frac{3}{2-x} \\ \\ \\ \implies \frac{-18}{2x^2-5x-7} = \frac{3}{2-x} \\ \\ \\ \implies \frac{-18}{3} (2-x) = 2x^2-5x-7 \\ \\ \\ \implies -6(2-x) = 2x^2-5x-7 \\ \\ \\ \implies -12+6x = 2x^2-5x-7 \\ \\ \\ \implies 2x^2-11x+5=0 \\ \\ \\ \implies 2x^2-10x-x+5=0 \\ \\ \\ \implies 2x(x-5) - 1(x-5)=0 \\ \\ \\ \implies (x-5)(2x-1) = 0


\implies x-5=0 \qquad OR \qquad 2x-1=0 \\ \\ \\ \implies \boxed{x=5} \qquad OR \qquad \boxed{x=\frac{1}{2}}



Thus, the solutions of the equation are 5 and \frac{\textbf{1}}{\textbf{2}}

QGP: :-)
Similar questions