Math, asked by suzen11335577, 1 month ago

Solve by factorisation method √3x² -2√2x - 2√3 = 0

Answers

Answered by Anonymous
2

Answer:

Factorised Form : (\sqrt{3}x+ \sqrt{2}) (x - \sqrt{6})

Roots : \dfrac{- \sqrt{2}}{\sqrt{3}} \; and \; \sqrt{6}

Step-by-step explanation:

\sqrt{3}x^2 - 2\sqrt{2}x - 2\sqrt{3} = 0

 \implies \sqrt{3}x^2 -3\sqrt{2}x + \sqrt{2}x - 2\sqrt{3} = 0

\implies \sqrt{3}x(x - \sqrt{3}\sqrt{2}) +\sqrt{2}(x - \sqrt{3}\sqrt{2}) = 0

\implies \sqrt{3}x(x - \sqrt{6}) + \sqrt{2}(x - \sqrt{6}) = 0

\implies (\sqrt{3}x+ \sqrt{2}) (x - \sqrt{6}) = 0

\\

Finding the roots now !

(i) (\sqrt{3}x+ \sqrt{2}) = 0

\implies \sqrt{3}x = -\sqrt{2}

\implies x = \dfrac{- \sqrt{2}}{\sqrt{3}}

\\

(ii)  (x - \sqrt{6}) = 0

\implies x = \sqrt{6}

\\

Factorised Form : (\sqrt{3}x+ \sqrt{2}) (x - \sqrt{6})

Roots : \dfrac{- \sqrt{2}}{\sqrt{3}} \; and \; \sqrt{6}

\\

Thanks !

Similar questions