Math, asked by kaurranji756, 10 months ago

solve by factorisation method and use d=b square-4ac and then -b plus minus under root of d divided by 2× a​

Attachments:

Answers

Answered by Anonymous
2

Solution:-

Given equation is

 \to  \bf\sqrt{2}x {}^{2}  + 7x + 5 \sqrt{2}  = 0

So, compare with ax² + bx + c = 0

 \to \bf \: a =  \sqrt{2}  \:  \:  \:  \: b = 7 \:  \: and \: c = 5 \sqrt{2}

Use quadratic formula to solve :-

 \to \bf \: x =  \frac{ - b \pm \sqrt{b {}^{2}  - 4ac} }{2a}

Put the value , we get

 \to \bf \: x =  \frac{ - 7 \pm \sqrt{(7) {}^{2}  - 4 \times 5 \sqrt{2}  \times  \sqrt{2} } }{2 \sqrt{2} }

 \to \bf \: x =  \frac{ - 7  \pm\:  \sqrt{49 - 4 \times 10} }{2 \sqrt{2} }

 \to \bf \: x =  \frac{ - 7 \pm \sqrt{9} }{2 \sqrt{2} }

 \to \bf  \: x =  \frac{ - 7 + 3}{2 \sqrt{2} } \: and \:  \frac{ - 7 - 3}{2 \sqrt{2} }

 \to \bf \: x =  \frac{ - 4}{2 \sqrt{2} \:  }  \: and \:  \:  \frac{ - 10}{2 \sqrt{2} }

 \to \bf \: x =  \frac{ - 2}{ \sqrt{2} }  \:  \: and \:  \frac{ - 5}{ \sqrt{2} }

Now rationalize the value of so we get final value of x

 \to \bf \: x =  \frac{ - 2 \times  \sqrt{2} }{ \sqrt{2} \times  \sqrt{2}  }  \: and \:  \frac{ - 5 \times  \sqrt{2} }{ \sqrt{2}  \times  \sqrt{2} }

 \to  \bf  \: x =  \frac{ - 2 \sqrt{2} }{2}  \:  \: and \:  \:  \frac{ - 5 \sqrt{2} }{2}

So value of x is

 \to \bf \: x =  \:  -  \sqrt{2}  \: \: and \:   \frac{ - 5 \sqrt{2} }{2}

Similar questions