Math, asked by suzen11335577, 25 days ago

Solve by factorisation method root 3 x^2 -2 root 2x -2 root 3

Answers

Answered by shukladivyansh076
1

Step-by-step explanation:

 \sqrt{3}  {x}^{2}  - 2 \sqrt{2} x - 2 \sqrt{3}

 \sqrt{3}  {x}^{2}  - 3 \sqrt{2} x +  \sqrt{2} x - 2 \sqrt{3}

 \sqrt{3} x(x -  \sqrt{6} ) +  \sqrt{2} (x -  \sqrt{6} )

( \sqrt{3} x +  \sqrt{2} )(x -   \sqrt{6} )

Answered by Anonymous
4

Answer:

Factorised Form : (\sqrt{3}x+ \sqrt{2}) (x - \sqrt{6})

Roots : \dfrac{- \sqrt{2}}{\sqrt{3}} \; and \; \sqrt{6}

Step-by-step explanation:

\sqrt{3}x^2 - 2\sqrt{2}x - 2\sqrt{3} = 0

 \implies \sqrt{3}x^2 -3\sqrt{2}x + \sqrt{2}x - 2\sqrt{3} = 0

\implies \sqrt{3}x(x - \sqrt{3}\sqrt{2}) +\sqrt{2}(x - \sqrt{3}\sqrt{2}) = 0

\implies \sqrt{3}x(x - \sqrt{6}) + \sqrt{2}(x - \sqrt{6}) = 0

\implies (\sqrt{3}x+ \sqrt{2}) (x - \sqrt{6}) = 0

\\

Finding the roots now !

(i) (\sqrt{3}x+ \sqrt{2}) = 0

\implies \sqrt{3}x = -\sqrt{2}

\implies x = \dfrac{- \sqrt{2}}{\sqrt{3}}

\\

(ii)  (x - \sqrt{6}) = 0

\implies x = \sqrt{6}

\\

Factorised Form : (\sqrt{3}x+ \sqrt{2}) (x - \sqrt{6})

Roots : \dfrac{- \sqrt{2}}{\sqrt{3}} \; and \; \sqrt{6}

\\

Thanks !

Similar questions