Math, asked by senanubhab2006, 2 months ago

Solve by factorisation x+1/x-1 + x-2/x+3 = 3​

Answers

Answered by Flaunt
9

\sf\huge {\underline{\underline{{Solution}}}}

\sf\implies \dfrac{x + 1}{x - 1}  +  \dfrac{x - 2}{x + 3}  = 3

Taking LCM of fractional values

\sf\implies \dfrac{(x + 1)(x + 3) + (x - 2)(x - 1)}{(x - 1)(x + 3)}  = 3

\sf\implies \dfrac{ {x}^{2}  + 3x + x + 3 +  {x}^{2} - x - 2x + 2 }{ {x}^{2}  + 3x - x - 3}  = 3

\sf\implies \dfrac{ {x}^{2}  +  {x}^{2} + 3x - 2x + 3 + 2 }{ {x}^{2}  + 3x - x - 3}  = 3

\sf\implies \dfrac{2 {x}^{2}  + x + 5}{ {x}^{2} + 3x - x - 3 }  = 3

\sf\implies \dfrac{2 {x}^{2} + x + 5 }{ {x}^{2}  + 2x - 3}  = 3

Cross multiply to both sides:

\sf\implies2 {x}^{2}  + x + 5 = 3( {x}^{2}  + 2x - 3)

\sf\implies2 {x}^{2}  + x + 5 = 3 {x}^{2}  + 6x - 9

Making like terms together :

\sf\implies3 {x}^{2}  - 2 {x}^{2} +  6x - x - 9 - 5 = 0

\sf\implies {x}^{2}  + 5x - 14 = 0

Now,our Equation is in the form of a quadratic equation so,we can easily factorise it by middle term splitting method:

\sf\implies {x}^{2}  + 7x - 2x - 14 = 0

\sf\implies \: x(x + 7) - 2(x + 7) = 0

\sf\implies(x - 2)(x + 7) = 0

∴ The roots are x = 2 & x= -7.

Similar questions