Math, asked by mail2ranvir05, 10 months ago

Solve By Factorization:

4x² - 4a²x + ( a⁴ - b⁴ )
i will mark brainliest plzzz answer

Answers

Answered by dimprajapati
8

SOLUTION :  

           

                      i) 4x² - 4a²x + a⁴ - b⁴ = 0

ii) Grouping, {(2x)² - 2(2x)(a²) + (a²)²} - (b²)² = 0

==> (2x - a²)² - (b²)² = 0

iii) The above is of the form a² - b² = (a - b)(a + b),

here a = (2x - a²) and b = b²

So, (2x - a²)² - (b²)² = {(2x - a²) + (b²)}*{(2x - a²) - (b²)}

= {2x - (a² - b²)}*{2x - (a² + b²)} = 0

==> Either {2x - (a² - b²)} = 0 or {2x - (a² + b²)} = 0

So, when {2x - (a² - b²)} = 0, x = (a² - b²)/2

and when {2x - (a² + b²)} = 0, x = (a² + b²)/2

Similar questions