Solve By Factorization:
4x² - 4a²x + ( a⁴ - b⁴ )
i will mark brainliest plzzz answer
Answers
Answered by
8
SOLUTION :
i) 4x² - 4a²x + a⁴ - b⁴ = 0
ii) Grouping, {(2x)² - 2(2x)(a²) + (a²)²} - (b²)² = 0
==> (2x - a²)² - (b²)² = 0
iii) The above is of the form a² - b² = (a - b)(a + b),
here a = (2x - a²) and b = b²
So, (2x - a²)² - (b²)² = {(2x - a²) + (b²)}*{(2x - a²) - (b²)}
= {2x - (a² - b²)}*{2x - (a² + b²)} = 0
==> Either {2x - (a² - b²)} = 0 or {2x - (a² + b²)} = 0
So, when {2x - (a² - b²)} = 0, x = (a² - b²)/2
and when {2x - (a² + b²)} = 0, x = (a² + b²)/2
Similar questions