Math, asked by CaptainNeil, 3 months ago

Solve by formula method: 2x² – 8x + 4 = 0​

Answers

Answered by MrHyper
452

To solve :

  • \sf{2x^{2}-8x+4~~using~quadratic~formula}

Solution :

Quadratic formula :-

  •  \underline{ \boxed{ \sf{ \pmb{ \frac{ - b \pm  \sqrt{ {b}^{2}  - 4ac} }{2a} }}}}

 

  • a = 2
  • b = 8
  • c = 4

\sf{Discriminant,~D=b^{2}-4ac}

\sf\implies{(-8)^{2}-4(2)(4)}

\sf\implies{64-4(8)}

\sf\implies{64-32}

\sf{~~~~~ \therefore~{\purple{\underline{\boxed{\sf{\pmb{Discriminant,~b^{2}-4ac=32}}}}}}}

\sf\implies{ {\dfrac{-(-8) \pm {\sqrt{32}}}{2(2)}}}

\sf\implies{ {\dfrac{8 \pm {\sqrt{16 \times 2}}}{4}}}

\sf\implies{ {\dfrac{8 \pm 4{\sqrt{2}}}{4}}}

\sf\implies{ {\dfrac{8 + 4{\sqrt{2}}}{4}}~,~~{\dfrac{8 - 4{\sqrt{2}}}{4}}}

\sf\implies{ {\purple{\underline{\boxed{\sf{\pmb{2+4{\sqrt{2}}~,~~2-4{\sqrt{2}}}}}}}}}

∴ Required answer :

Roots are :

  • \sf{{\purple{\pmb{2+4{\sqrt{2}}}}}~~and~~{\purple{\pmb{2-4{\sqrt{2}}}}}}

MяƖиνιѕιвʟє: Fantastic!
Answered by Anonymous
49

TO SOLVE:-

2x² - 8x + 4

FORMULA USED:-

 \frac{ - b  +  \sqrt{ {b}^{2}  - 4ac } }{2a}

SOLUTION:-

D = b² - 4ac

D = (-8)² - 4 × 2 × 4

D = 64 - 32

=> - (-8) + 32/2×2

=> 8 + 16×2/4

=> 8 + 42/4 & 8 - 42/4

=> 2 + 42 & 2 - 42

#NAWABZAADI

Similar questions