Math, asked by dharkarivaishnavi, 6 months ago

Solve by Gauss Elimination method 2x+y+z=10 ,3x+2y+3z=18,x+4y+9z=16(Write Row operations and values of x ,y and z as answer )​

Answers

Answered by yamunayuvanandhini08
6

Answer:

Step-by-step explanation:

Attachments:
Answered by aishwaryahk
0

Answer:

The values are x = 7, y = -9, z = 5.

Step-by-step explanation:

The given equations are

2x+y+z = 10

3x+2y+3z = 18

x+4y+9z = 16

The given equations in the matrix form are given by

A = \left[\begin{array}{4444}2&1&1&\begin{tabular{|}}10\\3&2&3&18\\1&4&9&16\end{array}\right] R_{1}/2  → R_{1}

   = \left[\begin{array}{4444}1&0.5&0.5&5\\3&2&3&18\\1&4&9&16\end{array}\right] R_{2}-3R_{1}R_{2}

   = \left[\begin{array}{4444}1&0.5&0.5&5\\0&0.5&1.5&3\\0&3.5&8.5&11\end{array}\right]  R_{2} / 0.5R_{2}

   = \left[\begin{array}{4444}1&0.5&0.5&5\\0&1&3&6\\0&3.5&8.5&11\end{array}\right]  R_{1}-0.5R_{2}R_{1}

   = \left[\begin{array}{4444}1&0&-1&2\\0&1&3&6\\0&0&-2&-10\end{array}\right]  R_{3}/(-2)R_{3}

   = \left[\begin{array}{4444}1&0&-1&2\\0&1&3&6\\0&0&1&5\end{array}\right]  

    R_{1} +R_{3}R_{1}

    R_{2}-3R_{3}R_{2}

  = \left[\begin{array}{4444}1&0&0&7\\0&1&0&-9\\0&0&1&5\end{array}\right]

Therefore the values are x = 7, y = -9, z = 5.

Similar questions