Solve by linear differentiable
equation
sec x dy/dx = y + sin x
Answers
Answer:
y + ( 1 + Sinx ) = c e ^ ( Sinx )
Step-by-step explanation:
Given----> Secx dy/dx = y + Sinx
To find-----> Solution of given differential equation
Solution------>
Secx dy / dx = y + Sinx
=> dy / dx = y / Secx + Sinx / Secx
=> dy / dx = y Cosx + Sinx Cosx
=> dy / dx = y Cosx + Sinx Cosx
=> dy / dx - y Cosx = Sinx Cosx
Comparing it with , dy / dx + Py = Q , we get,
P = - Cosx , Q = Sinx Cosx
∫ P dx
I. F. = e
∫ - Cosx dx
= e
- Sinx
= e
Now , solution is ,
- Sinx - Sinx
y e = ∫ Sinx Cosx e dx + C
Let,
- Sinx = t
=> - Cosx dx = dt
- Sinx
=> y e = - ∫ -t eᵗ dt + C
= ∫ t eᵗ dt + C
Applying intregation by parts , we get,
= t eᵗ - ∫ 1 eᵗ dt + C
= t eᵗ - eᵗ + c
= eᵗ ( t - 1 ) + C
- Sinx - Sinx
y e = e ( - Sinx - 1 ) + C
Sinx
y = - ( 1 + Sinx ) + C e
y + ( 1 + Sinx ) = C e^ ( Sinx )