English, asked by 8441842498, 10 months ago

Solve by matrix method 2x – y + z = 4, x + y + z = 1, x – 3y – 2z = 2.

Answers

Answered by empathictruro
4

Answer:

X = 9/5

Y = 1

Z  = -1/5

Explanation:

Solve by matrix method

2x – y + z = 4

x + y + z = 1

x – 3y – 2z = 2

write equations in forms AX = B

A= \left[\begin{array}{ccc}2&-1&1\\1&1&1\\1&-1&-2\end{array}\right]        

X= \left[\begin{array}{ccc}x\\y\\z\end{array}\right]

B= \left[\begin{array}{ccc}4\\1\\2\end{array}\right]  

Now

|A| =\begin{vmatrix}2&-1 &1\\1 &1 &1\\1 &-1 &2\end{vmatrix}  

= 2\begin{vmatrix}1&1\\-1&2\end{vmatrix} +1\begin{vmatrix}1&1\\1&2\end{vmatrix}+1\begin{vmatrix}1&1\\1&-1\end{vmatrix}

=2(2+1) + 1(2-1) + 1 (-1-1)

= 2×3 + 1×1 + 1×(-2)

=6+1-2

=5

|A| ≠ 0

Equations has unique equation

X = A^{-1}B

A^{-1}= 1/|A| ×adj (A)

adj (A) = \begin{vmatrix}A_{11} &A_{12} &A_{13}\\A_{21} &A_{22} &A_{23}\\A_{31} &A_{32} &A_{33}\end{vmatrix}'=\begin{vmatrix}A_{11} &A_{21} &A_{31}\\A_{12} &A_{22} &A_{32}\\A_{13} &A_{23} &A_{33}\end{vmatrix}

M_{11} = \begin{vmatrix}1&1\\-1&2\end{vmatrix} = (2 +1) = 3

M_{21} = \begin{vmatrix}1&1\\1&2\end{vmatrix}= (2-1) = 1

M_{13}=\begin{vmatrix}1&1\\1&-1\end{vmatrix} = (-1-1) = -2

M_{21}=\begin{vmatrix}-1&1\\-1&2\end{vmatrix} = (-2+1) = -1

M_{22} =\begin{vmatrix}2&1\\1&2\end{vmatrix} = (4-1) = 3

M_{23}=\begin{vmatrix}2&-1\\1&- 1\end{vmatrix} = (-2+1) = -1

M_{31}=\begin{vmatrix}-1&1\\1&1\end{vmatrix} = (-1-1) = -2

M_{32}= \begin{vmatrix}2&1\\1&1\end{vmatrix}=(2-1)= 1

M_{33}=\begin{vmatrix}2&-1\\1&1\end{vmatrix}=(2+1)=3

A_{11}=(-1)^{2} . M_{11}= 3

A_{12}=(-1)^{3}. M_{21} = 1

A_{13} = (-1)^{4} . M_{13} = -2

A_{21} = (-1)^{3} . M_{21} = 1

A_{22} = (-1)^{4} . M_{22} = 3

A_{23} = (-1)^{5} . M_{23} = 1

A_{31} = (-1)^{4} . M_{31} = -2

A_{32} = (-1)^{5} . M_{32} = -1

A_{33} = (-1)^{6} . M_{33} = 3

adj(A) = \left[\begin{array}{ccc}3&1&-2\\1&3&-1\\-2&1&3\end{array}\right]

\left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\frac{1}{5}\left[\begin{array}{ccc}3&1&-2\\1&3&-1\\-2&1&3\end{array}\right] \left[\begin{array}{ccc}4\\1\\2\end{array}\right]

=\left[\begin{array}{ccc}3/5&1/5&-2/5\\1/5&3/5&-1/5\\-2/5&1/5&3/5\end{array}\right] \left[\begin{array}{ccc}4\\1\\2\end{array}\right]

= \left[\begin{array}{ccc}9/5\\1\\-1/5\end{array}\right]

X = 9/5

Y = 1

Z  = -1/5

Similar questions