Math, asked by farmankhan7565, 10 months ago

Solve by matrix method 2x – y + z = 4, x + y + z = 1, x – 3y – 2z = 2

Answers

Answered by jitendra420156
2

Terefore x = 1, y = -1 and z = 1

Step-by-step explanation:

Given equations are 2x - y +z=4, x+y + z and x - 3y -2z = 2

A=\left[\begin{array}{ccc}2&-1&1\\1&1&1\\1&-3&-2\end{array}\right]          X = \left[\begin{array}{c}x\\y\\z\end{array}\right]      and      B = \left[\begin{array}{c}4\\1\\2\end{array}\right]

we know that  X = A^{-1}× B

adj A = \left[\begin{array}{ccc}1&-5&-2\\3&-5&-1\\-4&5&3\end{array}\right] \\\\  |A| = 2(-2+3)+1(-2-1)+1(-3-1) = -5  

A^{-1}=\frac{adj A}{|A|} = \frac{\left[\begin{array}{ccc}1&-5&-2\\3&-5&-1\\-4&5&3\end{array}\right] }{-5}

X = \left[\begin{array}{ccc}\frac{-1}{5} &1&\frac{2}{5}\\ \\\frac{-3}{5} &1&\frac{1}{5}\\ \\\frac{4}{5} &-1&\frac{-3}{5} \end{array}\right]×\left[\begin{array}{c}4\\1\\2\end{array}\right]=\left[\begin{array}{c}1\\-1\\1\end{array}\right]

\left[\begin{array}{ccc}x\\y\\z\end{array}\right]  = \left[\begin{array}{c}1\\-1\\1\end{array}\right]

x = 1, y = -1 and z = 1

Similar questions