Math, asked by anjalisrivastava2674, 2 months ago

Solve by matrix method 3x + 2y +z = 10, 4x + y + 3z = 15, x + y + z = 6.

Answers

Answered by Sagar9040
6

{\huge{\boxed{\sf{\green{Answer}}}}}

Given:

3x+2y+z=10,

4x+y+3z=15,

x+y+z=6

To find:

Find the values of x, y, and z.

Solution:

\begin{gathered}A = \left[\begin{array}{ccc}3&2&1\\4&1&3\\1&1&1\end{array}\right]\end{gathered} A= ⎣⎢⎡​	  341​	  211​	  131​	  ⎦⎥⎤​	 ​	 \begin{gathered}X = \left[\begin{array}{ccc}x\\y\\z\end{array}\right]\end{gathered} X= ⎣⎢⎡​	  xyz​	  ⎦⎥⎤

\begin{gathered}B = \left[\begin{array}{ccc}10\\15\\6\end{array}\right]\end{gathered} B= ⎣⎢⎡​	  10156​	  ⎦⎥⎤​	 ​

AX = B

A⁻¹AX = A⁻¹B

IX = A⁻¹B

X = A⁻¹B

To find inverse of A use AA⁻¹ = I

So,

\begin{gathered}A^{-1} = \left[\begin{array}{ccc}2/5&1/5&-1\\1/5&-2/5&1\\-3/5&1/5&1\end{array}\right]\end{gathered} A −1 = ⎣⎢⎡​	  2/51/5−3/5​	  1/5−2/51/5​	  −111​	  ⎦⎥⎤​	 ​	 X = A⁻¹B

\begin{gathered}\left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}2/5&1/5&-1\\1/5&-2/5&1\\-3/5&1/5&1\end{array}\right]\left[\begin{array}{ccc}10\\15\\6\end{array}\right]\end{gathered} ⎣⎢⎡​	  xyz​	  ⎦⎥⎤​	 = ⎣⎢⎡​	  2/51/5−3/5​	  1/5−2/51/5​	  −111​	  ⎦⎥⎤​	  ⎣⎢⎡​	  10156​	  ⎦⎥⎤

\begin{gathered}\left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}2/5*10+1/5*15+(-1)*6\\1/5*10+(-2/5)*15+1*6\\(-3/5)*10+1/5*15+1*6\end{array}\right]\end{gathered} ⎣⎢⎡​	  xyz​	  ⎦⎥⎤​	 = ⎣⎢⎡​	  2/5∗10+1/5∗15+(−1)∗61/5∗10+(−2/5)∗15+1∗6(−3/5)∗10+1/5∗15+1∗6​	  ⎦⎥⎤

\begin{gathered}\left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}1\\2\\3\end{array}\right]\end{gathered} ⎣⎢⎡​	  xyz​	  ⎦⎥⎤​	 = ⎣⎢⎡​	  123​	  ⎦⎥⎤​

So,

x = 1

y = 2

z = 3

Therefore, the value of x = 1, y = 2, and z = 3

Answered by himanshisheoran4
0

Step-by-step explanation:

may be helpful ❤

hope it completely helps you....

Attachments:
Similar questions