Math, asked by swanhayden7, 4 days ago

Solve by Method of Variation of parameter

y'' + y = cosecx

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm \: y'' + y = cosecx \\

Its Symbolic form is

\rm \: ( {D}^{2} + 1)y = cosecx \\

So, Auxiliary equation is

\rm \:  {m}^{2} + 1 = 0 \\

\rm \:  {m}^{2} =  - 1 \\

\rm\implies \:m \:  =  \:  \pm \: i

So, Complementary function is given by

\rm \: CF = c_1cosx + c_2sinx \\

So, it means

\rm \: y_1 = cosx \\

\rm \: y_2 = sinx \\

So,

\rm \: y_1' =   \: -  \: sinx \\

\rm \: y_2' =   cosx \\

Now, Wronskian, W is given by

\rm \: W = y_1y_2' - y_2y_1' \\

\rm \: W =  {cos}^{2}x +  {sin}^{2}x = 1 \\

Now, we know

Particular Integral is given by

\rm \: P.I. = Py_1 + Qy_2 \\

where,

\rm \: P =  - \displaystyle\int\rm  \frac{y_2 \: cosecx}{W}  \: dx \\

and

\rm \: Q =\displaystyle\int\rm  \frac{y_1 \: cosecx}{W}   \: dx\\

So, on substituting the values in PI, we get

\rm \: P.I. = - cosx\displaystyle\int\rm  \frac{sinx \: cosecx}{1} \: dx + sinx\displaystyle\int\rm  \frac{cosx \: cosecx}{1}dx  \\

\rm \: P.I. = - cosx\displaystyle\int\rm  1\: dx + sinx\displaystyle\int\rm  cotxdx  \\

\rm \: P.I. = - x \: cosx + sinx \: log |sinx|   \\

So, complete solution is

\rm \: y = CF + P.I. \\

\rm \: y = c_1cosx + c_2sinx  - x \: cosx + sinx \: log |sinx|  \\

Hence,

\boxed{\rm{y = c_1cosx + c_2sinx  - x \: cosx + sinx \: log |sinx| \: }}  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions