solve by partial fraction
integrate
2x/[(x-1)^2(x+2)]
Answers
Answered by
0
Answer:
P=∫
x(1−2x)
1−x
2
dx
⇒∫
x−2x
2
1−x
2
dx=∫
x(1−2x)
1
dx−∫
x(1−2x)
x
2
dx
⇒∫
x(1−2x)
1
dx−∫
1−2x
x
dx
Let M=∫
x(1−2x)
1
& N=∫
1−2x
x
dx
⇒ using partial fraction in M we get
1=A(1−2x)+Bx
1=x(−2A+B)+A
[A=1] & −2A+B=0
[B=2A=2]
Hence
M=∫
x
1
+
1−2x
2
dx=logx+2log(1−2x) & N=∫
1−2x
x
dx
Let 1−2x=v & x=(1−v)/2
−2dx=dv
N=
4
−1
∫1−v.dv=
4
−1
[v−
2
v
2
]
=
4
−1
[1−2x−
2
(1−2x)
2
]
=−
8
4x
2
+1−4x+4x−2
=
8
4x
2
−1
Hence
P=M+N=log
(1−2x)
2
x
+
8
4x
2
−1
+c
Answered by
0
Step-by-step explanation:
2x/[(x-1)^2(x+2)]=A/x+2 +B/(x-1)^2 +C/(x-1)
now u can easily solve it
Similar questions