Math, asked by kush86218, 1 year ago

solve by quadratic formula (2x+3)(3x-2)+2 =0​

Answers

Answered by kritarth24
10

I hope you understand......

Attachments:
Answered by attinderpaul55225
10

♒♒♒♒♒♒

(2x + 3)(3x - 2) + 2 = 0 \\  =  > 6 {x}^{2}  - 4x + 9x - 6 + 2 = 0 \\  =  > 6 {x}^{2}  + 5x - 4 = 0 \\ according \: to \: the \: equation \\ we \: can \: foll ow \: the \: equation \\  = a {x}^{2}  + bx + c = 0 \\ here \: the \: coefficient \: of :  {x}^{2}  = 6 \\ the \: coefficient \: of : x = 5 \\ and \:  \\ the \: coefficient \:  of : c =  - 4 \\ the \: formula \: of \: quadric \: equation \\ \\  is : x =  \frac{ - b \frac{ + }{} \sqrt{ {b}^{2}  - 4ac}  }{2 \times a}  \\  =  > x =   \frac{ - 5 \frac{ + }{} \sqrt{ {5}^{2} - 4 \times 6 \times ( - 4) }  }{2  \times 6}  \\  =  > x =  \frac{ - 5 \frac{ + }{} \sqrt{25 + 96}  }{2 \times 6}  \\  =   > x =  \frac{ - 5 \frac{ + }{}  \sqrt{121} }{12}  \\  =  > x =  \frac{ - 5 \frac{ + }{ } (11)}{12}  \\ here \: we \: get \: two \: values \: like \\ x =  \frac{ - 5 + 11}{12}  =  \frac{6}{12}  =  \frac{1}{2}  \\ x =   \frac{ - 5 - 11}{12}  =   \frac{ - 16}{12}  =  \frac{ - 4}{3}

♒♒♒♒♒♒

✨✨✨hope it helps✨✨

Similar questions