solve by substitution 2x-3y+6=0 and 2x+3y-18=0
Answers
Answered by
40
Answer:
Step-by-step explanation:
2x - 3y + 6 = 0 ... Eqn ( 1 )
2x + 3y - 18 = 0 ... Eqn ( 2 )
From Eqn ( 1 ) we get,
⇒ 2x = 3y - 6
Substituting this in Eqn ( 2 ) we get,
⇒ 3y - 6 + 3y - 18 = 0
⇒ 6y - 24 = 0
⇒ 6y = 24
⇒ y = 24 / 6 = 4
⇒ 2x = 3y - 6
⇒ 2x = 3 ( 4 ) - 6
⇒ 2x = 12 - 6
⇒ 2x = 6
⇒ x = 6 / 2 = 3
Hence the value of x is 3 and value of y is 4.
Answered by
15
Given :
2x - 3y + 6 = 0... Eq (1)
2x + 3y - 18 = 0... Eq (2)
From ( 1 ),
» 2x = 3y - 6
Substituting in Eq(2),
» 3y - 6 + 3y - 18 = 0
» 6y - 24 = 0
» y = 4
Now,
2x = 3y - 6
» 2x = 3 ( 4 ) - 6
» 2x = 12 - 6
» 2x = 6
» x = 3
Final answer :
x = 3 and y = 4
Similar questions