Math, asked by meshwar824, 1 month ago

solve by substitution method 0.4x+0.3y=1.7 and 0.7x+0.2y=0.8​

Answers

Answered by ImperialGladiator
11

Answer:

  • x = 3
  • y = 5

Explanation:

Given equations,

 \rm \implies \: 0.4x + 0.3y = 1.7 . . . . .  \bf (i)

 \rm \implies \: 0.7x + 0.2y = 0.8. . . . . .  \bf (ii)

Solving eq.(i) :-

\rm \implies \: 0.4x + 0.3y = 1.7

\rm \implies \: 0.4x  = 1.7 - 0.3y

\rm \implies \: x  =   \dfrac{1.7 - 0.3y}{0.4}

Substituting x in eq.(ii) :-

\rm \implies \: 0.7x + 0.2y = 0.8

\rm \implies \: 0.7 \bigg( \dfrac{1.7 - 0.3y}{0.4} \bigg)  + 0.2y = 0.

\rm \implies \: \dfrac{1.19- 0.21y}{0.4}   + 0.2y = 0.8

\rm \implies \: \dfrac{1.19- 0.21y + 0.08y}{0.4}    = 0.8

\rm \implies \: \dfrac{1.19- 0.29y }{0.4}    = 0.8

\rm \implies \: {1.19- 0.29y }= 0.8\times 0.4

\rm \implies \: {1.19- 0.29y }= 0.32

\rm \implies \: 1.19- 0.32 = 0.29y

\rm \implies \:  0.87= 0.29y

\rm \implies \:   \dfrac{0.87}{0.29}  = y

\rm \implies \:   \dfrac{87}{29}  = y

\rm \implies \:   3  = y

\rm \therefore \:  y = 3

Substituting y in eq.(i) :-

\rm \implies \: 0.4x + 0.3y = 1.7

\rm \implies \: 0.4(3) + 0.3y = 1.7

\rm \implies \: 1.2 + 0.3y = 1.7

\rm \implies \: 0.3y = 1.7 - 1.2

\rm \implies \: 0.3y = 1.5

\rm \implies \:y =  \dfrac{1.5}{0.3}

\rm \implies \:y =  \dfrac{15}{3}

\rm \implies \:y =  5

Hence the value of :-

  • x = 3
  • y = 5

__________________________

Similar questions