Math, asked by satyam2704, 1 month ago

solve by substitution method 15x+10y=45
9x+5y=24

Answers

Answered by BrainlyTwinklingstar
2

Answer

{\sf \dashrightarrow 15x + 10y = 45 \: \: --- (i)}

{\sf \dashrightarrow 9x + 5y = 24 \: \: --- (ii)}

We should find the value of x by equation (i),

{\sf \dashrightarrow 15x + 10y = 45}

{\sf \dashrightarrow 15x = 45 - 10y}

{\sf \dashrightarrow x = \dfrac{45 - 10y}{15}}

Now, we should find the value of y by second equation.

{\sf \dashrightarrow 9x + 5y = 24}

{\sf \dashrightarrow 15 \bigg( \dfrac{45 - 10y}{15} \bigg) + 5y = 24}

{\sf \dashrightarrow \dfrac{675 - 150y}{15} + 5y = 24}

{\sf \dashrightarrow \dfrac{675 - 150y + 75y}{15} = 24}

{\sf \dashrightarrow \dfrac{675 - 75y}{15} = 24}

{\sf \dashrightarrow 675 - 75y = 24 \times 15}

{\sf \dashrightarrow 675 - 75y = 360}

{\sf \dashrightarrow -75y = 360 - 675}

{\sf \dashrightarrow -75y = (-315)}

{\sf \dashrightarrow y = \cancel \dfrac{-135}{-75} = \dfrac{27}{15}}

Now, we should find the original value of x by equation (i)

{\sf \dashrightarrow 15x + 10y = 45}

{\sf \dashrightarrow 15x + 10 \bigg( \dfrac{27}{15} \bigg) = 45}

{\sf \dashrightarrow 15x + \dfrac{270}{15} = 45}

{\sf \dashrightarrow 15x = 45 - \dfrac{270}{15}}

{\sf \dashrightarrow 15x = \dfrac{675 - 270}{15}}

{\sf \dashrightarrow 15x = \dfrac{405}{15}}

{\sf \dashrightarrow 15x = 27}

{\sf \dashrightarrow x = \dfrac{27}{15}}

Hence, the values of x and y are \sf \dfrac{27}{15} and \sf \dfrac{27}{15} respectively.

Similar questions