Math, asked by hemarawat370, 11 months ago

Solve by substitution method

Attachments:

Answers

Answered by shanaya1612
2

Question:

2x -  \frac{3}{y} = 9 \\ 3x +  \frac{7}{y}  = 2 \\

& y≠0

-----------------------------------------------

Answer:

x =  >  \frac{78}{25}  \\ y =  >  \frac{25}{ - 23}

______________________________

Step-by-step explanation:

let \frac{1}{y} = a

So,

2x - 3a = 9 \:  \:  \:  \:  \: ....(1) \\ 3x  + 7a = 2 \:  \:  \:  \:  \: ....(2) \\  \:  \:  \:  \: from \: eq.(1) \\ x =  >  \frac{9 + 3a}{2}

putting value of x in eq.(2)

3x + 7a = 2 \\  =  > 3( \frac{9 + 3a}{2}) + 7a = 2 \\  =  >  \frac{27 + 9a}{2}  + 7a = 2  \\ =  >  \frac{27 + 9a + 2(7a)}{2} = 2 \\  =  > 27 +9a + 14a = 2(2) \\  =  > 25a = 4 - 27 \\  =  > 25a =  - 23 \\  a =  >  \frac{ - 23}{25}

putting value of a in eq.(1)

 =  > 2x - 3a = 9 \\  =  > 2x - 3( \frac{ - 23}{25}) = 9 \\  =  > 2x  + (  \frac{69}{25}) = 9 \\  =  > 50x + 69 = 25(9) \\  =  > 50x = 225 - 69 \\  =  > 50x = 156 \\  =  >  x =   \frac{156}{50}  \\ x =  >  \frac{78}{25}

Since,

 =  > a =  \frac{1}{y}  \\ =  >   \frac{1}{y} =  \frac{ - 23}{25}   \\ y =  >  \frac{25}{ - 23}

Hence, the value of x is 78/25 & y is 25/-23.

_____________________________________

hope it is clear to uh!!

------------------------✌️✌️

Similar questions